C-type lectins (CTLs) are a large family of Ca(2+)-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca(2+)-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476918PMC
http://dx.doi.org/10.1016/j.ibmb.2014.12.006DOI Listing

Publication Analysis

Top Keywords

ctl domains
20
manduca sexta
8
sexta genome
8
three ctl
8
signal peptide
8
ctl
6
domains
5
structural features
4
features evolutionary
4
evolutionary relationships
4

Similar Publications

Targeting cytotoxic T lymphocytes (CTLs), as chimeric antigen T cells (CAR-T), T cell receptor-engineered (TCR)-T cells or adoptive cell transfer of tumor infiltrating T cells (TILs) to solid tumors is a major therapeutic challenge. We describe a new strategy to confer these lymphocytes with adhesiveness to surface proteins enriched in the tumor microenvironment. This approach is based on decorating CTLs with monoclonal antibodies (mAbs) specific to any surface protein of interest within the stroma and the extracelullar matrix of solid tumors.

View Article and Find Full Text PDF

Imaging the immune synapse: Three-dimensional analysis of the immune synapse.

Methods Cell Biol

February 2025

Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain. Electronic address:

T cell receptor (TCR) stimulation of T lymphocytes by antigen bound to the major histocompatibility complex (MHC) of an antigen-presenting cell (APC), together with the interaction of accessory molecules, induces the formation of the immunological synapse (IS), the convergence of secretion vesicles toward the centrosome, and the polarization of the centrosome to the IS. Upon IS formation, an initial increase in cortical filamentous actin (F-actin) at the IS takes place, followed by a decrease in F-actin density at the central region of the IS, which contains the secretory domain. These reversible, cortical actin cytoskeleton reorganization processes that characterize a mature IS occur during lytic granule secretion in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes.

View Article and Find Full Text PDF

Lipases such as patatin-like phospholipase domain-containing protein 3 (PNPLA3) exist in multiple tissue types. In subcutaneous adipose tissue, PNPLA3 was not altered during the periparturient period. Conversely, strong associations between liver PNPLA3 and liver triglyceride content peripartum were identified and confirmed to be causative using knockdown approaches in a primary bovine hepatocyte model.

View Article and Find Full Text PDF

IFNγ regulates ferroptosis in KFs by inhibiting the expression of SPOCD1 through DNMT3A.

Cell Death Discov

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.

Keloid is benign skin tumor, and their curing is relatively difficult due to the unclear mechanism of formation. Inducing ferroptosis of keloid fibroblasts (KFs) may become a new method for treating keloid. Here, we discover interferon (IFN)γ could induce KFs ferroptosis through inhibiting SPOC domain-containing protein 1 (SPOCD1), serving as a mode of action for CD8T cell (CTL)-mediated keloid killing.

View Article and Find Full Text PDF

The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!