The aim of the present study was to develop a stable formulation containing standardized pomegranate rind extracts (SPRE) for topical use in the treatment of dermal diseases. Ellagic acid (EA) as the major active constituent of SPRE (not less than 13%) was quantified by HPLC as an indicator for studies on the stability, in vitro drug release, and skin penetration/retention. The formulation prepared with polyethylene glycols (PEG 400 and PEG 4000) containing 5% SPRE has been found to be stable and provide a release rate of 36.6741±5.0072 μg/cm(2)/h that was best fitted to the zero-order kinetic model. EA from SPRE did not penetrate the full-thickness rat skin but the skin retention of EA was determined to be 2.22±0.16 μg/cm(2) with a total recovery of 95.14±5.51%. The results indicated that this 5% SPRE PEG ointment was of satisfactory physicochemical properties and worth further in vivo investigations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physicochemical properties
8
release skin
8
formulation standardized
8
standardized pomegranate
8
pomegranate rind
8
spre
5
properties vitro
4
vitro release
4
skin
4
skin permeation
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Cell Physiol Biochem

January 2025

Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.

View Article and Find Full Text PDF

Microencapsulation using a novel wall material prepared via Maillard reaction-derived mung bean protein-peach gum conjugates to enhance stability and functionality of chia seed oil.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China. Electronic address:

This study investigated the potential of Maillard reaction products (MRPs) derived from mung bean protein isolate (MBPI) and peach gum (PG) conjugates as wall materials for microencapsulating chia seed oil (CSO). Four formulations (MMRP) were prepared using spray-drying and compared to a commercial sample (CMMRP). The MMRP formulation exhibited the highest encapsulation yield (91 %) and encapsulation efficiency (96 %), along with favorable physical properties, including a spherical shape and smooth surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!