Microbiota shifts in the surface mucopolysaccharide layer of corals transferred from natural to aquaria settings.

J Invertebr Pathol

Department of Biological Sciences, Florida International University, Miami, FL 33199, United States; International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.

Published: February 2015

Bacteria associated with the surface mucopolysaccharide layer (SML) of corals have been proposed to be paramount to coral health, and are occasionally studied in aquaria. Using automated ribosomal intergenic spacer analysis (ARISA), this study examined the temporal changes in the SML microbiota of coral fragments (Siderastrea siderea) transferred from the reef to aquaria. In total, 460 amplicon peaks were detected, 155 of which were unique. Extensive microbiota shifts occurred one day after transfer, with stabilization between 14 and 28days. These results suggest that studies examining coral in laboratory settings should consider the observed temporal dynamics in the SML microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2014.12.009DOI Listing

Publication Analysis

Top Keywords

microbiota shifts
8
surface mucopolysaccharide
8
mucopolysaccharide layer
8
sml microbiota
8
microbiota
4
shifts surface
4
layer corals
4
corals transferred
4
transferred natural
4
natural aquaria
4

Similar Publications

Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation.

J Transl Med

January 2025

Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.

Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).

View Article and Find Full Text PDF

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Captivity Reduces Diversity and Shifts Composition of the Great Bustard () Microbiome.

Ecol Evol

January 2025

Hebei Key Laboratory of Wetland Ecology and Conservation Hengshui China.

Captivity offers protection for endangered species, but for bustards, captive individuals face a higher risk of disease and exhibit lower reintroduction success rates. Changes in the diversity of host bacterial and fungal microbiota may be a significant factor influencing reintroduction success. The great bustard () is a globally recognized endangered bird species.

View Article and Find Full Text PDF

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Nutrients

December 2024

Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!