Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics.

Bioresour Technol

Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium. Electronic address:

Published: March 2015

The conventional activated sludge process is widely used for wastewater treatment, but to progress toward energy self-sufficiency, the wastewater treatment scheme needs to radically improve energy balances. We developed a high-rate contact stabilization (HiCS) reactor system at high sludge-specific loading rates (>2 kg bCOD kg(-1)TSS d(-1)) and low sludge retention times (<1.2 d) and demonstrate that it is able to recover more chemical energy from wastewater organics than high-rate conventional activated sludge (HiCAS) and the low-rate variants of HiCS and HiCAS. The best HiCS system recovered 36% of the influent chemical energy as methane, due to the combined effects of low production of CO2, high sludge yield, and high methane yield of the produced sludge. The HiCS system imposed a feast-famine cycle and a putative selection pressure on the sludge micro-organisms toward substrate adsorption and storage. Given further optimization, it is a promising process for energy recovery from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.12.018DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
high-rate contact
8
contact stabilization
8
energy-neutral wastewater
4
treatment high-rate
4
stabilization process
4
process maximally
4
maximally recover
4
recover sewage
4
sewage organics
4

Similar Publications

To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.

View Article and Find Full Text PDF

A Novel Eco-Friendly Process for the Synthesis and Purification of Ascorbyl-6-Oleates.

Foods

December 2024

Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.

Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.

View Article and Find Full Text PDF

Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!