The identification of small sequence variants remains a challenging but critical step in the analysis of next-generation sequencing data. Our variant calling tool, VarScan 2, employs heuristic and statistic thresholds based on user-defined criteria to call variants using SAMtools mpileup data as input. Here, we provide guidelines for generating that input, and describe protocols for using VarScan 2 to (1) identify germline variants in individual samples; (2) call somatic mutations, copy number alterations, and LOH events in tumor-normal pairs; and (3) identify germline variants, de novo mutations, and Mendelian inheritance errors in family trios. Further, we describe a strategy for variant filtering that removes likely false positives associated with common sequencing- and alignment-related artifacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278659PMC
http://dx.doi.org/10.1002/0471250953.bi1504s44DOI Listing

Publication Analysis

Top Keywords

variant calling
8
identify germline
8
germline variants
8
varscan germline
4
germline variant
4
calling somatic
4
somatic mutation
4
mutation detection
4
detection identification
4
identification small
4

Similar Publications

Goats typically have double coats, with the outermost coarse hairs providing protection against mechanical and radiation damage. While much attention has been paid to cashmere due to its status as a high-end textile material, there is limited information available on coarse hair. This study aimed to identify genomic variants, such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels), associated with coarse hair diameter using a genome-wide association study (GWAS).

View Article and Find Full Text PDF

This paper proposes a detailed process for SV calling that permits a data-driven assessment of multiple SV callers that uses both genome assemblies and long-reads. The process is implemented as a software pipeline named Structural Variant - Jaccard Index Measure, or SVJIM, using the Snakemake [20] workflow management system. Like most state-of-the-art SV callers, SV-JIM detects the presence of variations between pairs of genomes, but it streamlines the numerous SV calling stages into a single process for user convenience and evaluates the multiple SV sets produced using the Jaccard index measure to identify those with the highest consistency among the included SV callers.

View Article and Find Full Text PDF

Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.

Methods And Results: We devised a targeted NGS panel spanning an 80.

View Article and Find Full Text PDF

Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER.

STAR Protoc

January 2025

Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.

View Article and Find Full Text PDF

Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!