Crystal structure of (R)-N-benzyl-1-phenylethanaminium (R)-4-chloro-mandelate.

Acta Crystallogr Sect E Struct Rep Online

Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NovaScotia, B2N 5E3, Canada.

Published: December 2014

The absolute configuration of the title mol-ecular salt, C15H18N(+)·C8H6ClO3 (-), has been confirmed by resonant scattering. In the (R)-N-benzyl-1-phenyl-ethyl-ammonium cation, the phenyl rings are inclined to one another by 44.65 (7)°. In the crystal, the (R)-4-chloro-mandelate anions are linked via O-H⋯O hydrogen bonds and bridged by N-H⋯O hydrogen bonds involving the cations, forming chains along [010]. There are C-H⋯O hydrogen bonds present within the chains, which are linked via C-H⋯π inter-actions and a short Cl⋯Cl inter-action [3.193 (1) Å] forming a three-dimensional framework. The structure was refined as a two-component inversion twin giving a Flack parameter of 0.05 (4).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257388PMC
http://dx.doi.org/10.1107/S1600536814023204DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
crystal structure
4
structure r-n-benzyl-1-phenylethanaminium
4
r-n-benzyl-1-phenylethanaminium r-4-chloro-mandelate
4
r-4-chloro-mandelate absolute
4
absolute configuration
4
configuration title
4
title mol-ecular
4
mol-ecular salt
4
salt c15h18n+·c8h6clo3
4

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.

View Article and Find Full Text PDF

Protein Target Search Diffusion-association/dissociation Free Energy Landscape around DNA Binding Site with Flanking Sequences.

Biophys J

January 2025

Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:

In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.

View Article and Find Full Text PDF

A major threat to world health is the high death rate from gastrointestinal (GI) cancer, especially in Asia, South America, and Europe. The new approaches are needed because of the complexity and heterogeneity of gastrointestinal (GI) cancer, which has made the development of effective treatments difficult. To investigate the potential of peptide-based therapies that target the P21 Activated Kinase 1 (PAK1) in GI cancer, we are using the DBsORF database to predict peptides from the genomes of two bacterial strains: Lactobacillus plantarum and Pediococcus pentosaceus.

View Article and Find Full Text PDF

In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!