It has been reported dysregulation of certain microRNAs (miRNAs / miRs) is involved in tumorigenesis. However, the miRNAs associated with radiocarcinogenesis remain undefined. In this study, we validated the upregulation of miR-467a in radiation-induced mouse thymic lymphoma tissues. Then, we investigated whether miR-467a functions as an oncogenic miRNA in thymic lymphoma cells. For this purpose, we assessed the biological effect of miR-467a on thymic lymphoma cells. Using miRNA microarray, we found four miRNAs (miR-467a, miR-762, miR-455 and miR-714) were among the most upregulated (>4-fold) miRNAs in tumor tissues. Bioinformatics prediction suggests miR-467a may potentially regulate apoptosis pathway via targeting Fas and Bax. Consistently, in miR-467a-transfected cells, both proliferation and colony formation ability were significantly increased with decrease of apoptosis rate, while, in miR-467a-knockdown cells, proliferation was suppressed with increase of apoptosis rate, indicating that miR-467a may be involved in the regulation of apoptosis. Furthermore, miR-467a-knockdown resulted in smaller tumors and better prognosis in an in vivo tumor-transplanted model. To explain the mechanism of apoptosis suppression by miR-467a, we explore the expression of candidate target genes (Fas and Bax) in miR-467a-transfected relative to negative control transfected cells using flow cytometry and immunoblotting. Fas and Bax were commonly downregulated in miR-467a-transfected EL4 and NIH3T3 cells, and all of the genes harbored miR-467a target sequences in the 3'UTR of their mRNA. Fas and Bax were actually downregulated in radiation-induced thymic lymphoma tissues, and therefore both were identified as possible targets of miR-467a in thymic lymphoma. To ascertain whether downregulation of Fas and / or Bax is involved in apoptosis suppression by miR-467a, we transfected vectors expressing Fas and Bax into miR-467a-upregulated EL4 cells. Then we found that both Fas- and Bax-overexpression decreased cell viability with increase of apoptosis rate, indicating that downregulation of Fas and Bax may be at least partly responsible for apoptosis suppression by miR-467a. These data suggest that miR-467a may have oncogenic functions in radiation-induced thymic lymphoma cells and that its increased expression may confer a growth advantage on tumor cells via aberrant expression of Fas and Bax.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278260 | PMC |
http://dx.doi.org/10.7150/ijbs.10276 | DOI Listing |
Toxics
December 2024
Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland.
Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in terms of multigenerational impact. In this work, for the first time, we examined neurotoxic and pro-apoptotic effects of BP-3 on mouse brain regions (cerebral cortex and hippocampus) in both the first (F) and second (F) generations after maternal exposure to environmentally relevant BP-3 levels.
View Article and Find Full Text PDFJ Anim Sci
January 2025
Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany 389 01, Czech Republic.
Fundam Clin Pharmacol
February 2025
Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
Background: Chalcones have been described in the literature as promising antineoplastic compounds.
Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).
Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.
Transl Oncol
December 2024
Department of General Surgery, Sanmen People's Hospital, Sanmen 317100, China. Electronic address:
Clin Exp Pharmacol Physiol
January 2025
Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!