Transcriptome analysis of Kaposi's sarcoma-associated herpesvirus during de novo primary infection of human B and endothelial cells.

J Virol

Department of Microbiology & Immunology, University of Nevada, Reno, School of Medicine, Center for Molecular Medicine, Reno, Nevada, USA

Published: March 2015

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) infects many target cells (e.g., endothelial, epithelial, and B cells, keratinocytes, and monocytes) to establish lifelong latent infections. Viral latent-protein expression is critical in inducing and maintaining KSHV latency. Infected cells are programmed to retain the incoming viral genomes during primary infection. Immediately after infection, KSHV transcribes many lytic genes that modulate various cellular pathways to establish successful infection. Analysis of the virion particle showed that the virions contain viral mRNAs, microRNAs, and other noncoding RNAs that are transduced into the target cells during infection, but their biological functions are largely unknown. We performed a comprehensive analysis of the KSHV virion packaged transcripts and the profiles of viral genes transcribed after de novo infections of various cell types (human peripheral blood mononuclear cells [PBMCs], CD14(+) monocytes, and telomerase-immortalized vascular endothelial [TIVE] cells), from viral entry until latency establishment. A next-generation sequence analysis of the total transcriptome showed that several viral RNAs (polyadenylated nuclear RNA, open reading frame 58 [ORF58], ORF59, T0.7, and ORF17) were abundantly present in the KSHV virions and effectively transduced into the target cells. Analysis of the transcription profiles of each viral gene showed specific expression patterns in different cell lines, with the majority of the genes, other than latent genes, silencing after 24 h postinfection. We differentiated the actively transcribing genes from the virion-transduced transcripts using a nascent RNA capture approach (Click-iT chemistry), which identified transcription of a number of viral genes during primary infection. Treating the infected cells with phosphonoacetic acid (PAA) to block the activity of viral DNA polymerase confirmed the involvement of lytic DNA replication during primary infection. To further understand the role of DNA replication during primary infection, we performed de novo PBMC infections with a recombinant ORF59-deleted KSHV virus, which showed significantly reduced numbers of viral copies in the latently infected cells. In summary, the transduced KSHV RNAs as well as the actively transcribed genes control critical processes of early infection to establish KSHV latency.

Importance: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple human malignancies in immunocompromised individuals. KSHV establishes a lifelong latency in the infected host, during which only a limited number of viral genes are expressed. However, a fraction of latently infected cells undergo spontaneous reactivation to produce virions that infect the surrounding cells. These newly infected cells are primed early to retain the incoming viral genome and induce cell growth. KSHV transcribes a variety of lytic proteins during de novo infections that modulate various cellular pathways to establish the latent infection. Interestingly, a large number of viral proteins and RNA are encapsidated in the infectious virions and transduced into the infected cells during a de novo infection. This study determined the kinetics of the viral gene expression during de novo KSHV infections and the functional role of the incoming viral transcripts in establishing latency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337554PMC
http://dx.doi.org/10.1128/JVI.02507-14DOI Listing

Publication Analysis

Top Keywords

infected cells
24
primary infection
20
viral
15
cells
14
kaposi's sarcoma-associated
12
sarcoma-associated herpesvirus
12
kshv
12
target cells
12
incoming viral
12
viral genes
12

Similar Publications

Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases.

Folia Microbiol (Praha)

January 2025

Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.

The increasing prevalence of neurodegenerative diseases is a formidable task due to their multifactorial causation and treatments limited to disease maintenance and progression. Epstein-Barr virus (EBV) is reported to be involved with neuropathologies; previous studies from our group suggested the effective binding of epigallocatechin-3-gallate (EGCG) with EBV nuclear antigen 1 (EBNA1) and glycoprotein H (gH). Therefore, in the current study, we evaluated the anti-EBV effect of ECGG on the neuronal cells.

View Article and Find Full Text PDF

Introduction: Two-stage revision is considered the gold standard treatment in chronic periprosthetic joint infection (PJI) but no specific criteria or examination exist to determine infection eradication before reimplantation. This study aimed to assess the diagnostic performance of leukocyte scintigraphy after the first-stage procedure in two-stage revision for chronic PJI.

Material And Methods: Patients studied with leukocyte scintigraphy after cement spacer insertion for knee PJI from January 2012 to December 2021 were retrospectively included.

View Article and Find Full Text PDF

The association of gut microbiota, immunocyte dynamics, and protein-protein ratios with tuberculosis susceptibility: a Mendelian randomization analysis.

Sci Rep

January 2025

Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.

This study focused on the relationships among gut microbiota, plasma protein ratios, and tuberculosis. Given the unclear causal relationship between gut microbiota and tuberculosis and the scarcity of research on relevant plasma protein ratios in tuberculosis, Mendelian randomization analysis (MR) was employed for in-depth exploration. By analyzing the GWAS data of individuals with European ancestry (the FinnGen dataset included 409,568 controls and 2613 cases), using the two-sample MR method, we focused on evaluating the impact of immunocyte-mediated gut microbiota on tuberculosis and the associations between 2821 plasma protein-to-protein ratios and tuberculosis.

View Article and Find Full Text PDF

Identification of candidate genes involved in Zika virus-induced reversible paralysis of mice.

Sci Rep

January 2025

Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.

Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis.

View Article and Find Full Text PDF

Background: Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.

Methods: This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!