Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase.

Proc Natl Acad Sci U S A

Jason L. Choy Laboratory of Single-Molecule Biophysics, the California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; Department of Molecular and Cell Biology, Department of Physics, Department of Chemistry, Biophysics Graduate Group and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA 94720

Published: January 2015

Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP's pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kinetic model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. This model suggests a finely tuned mechanism that balances transcription speed and fidelity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311812PMC
http://dx.doi.org/10.1073/pnas.1421067112DOI Listing

Publication Analysis

Top Keywords

trigger loop
8
transcription rate
8
rna polymerase
8
pause-free velocity
8
loop folding
4
folding determines
4
determines transcription
4
rate escherichia
4
escherichia coli's
4
coli's rna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!