For the first time, a fungal production system is described for expression and secretion of the medically important human protein G-CSF, in Aspergillus niger. A reliable strategy was chosen with in-frame fusion of G-CSF behind a KEX2 cleavage site downstream of the coding region of the highly secreted homologous glucoamylase. This provided secretion levels of 5-10 mg/l culture medium of correctly processed G-CSF, although the majority of the protein (>90%) was biologically inactive. Following denaturation/ concentration and chromatographic separation/ renaturation, the G-CSF proliferation activity increased considerably, and analytical immobilised metal affinity chromatography confirmed the monomeric and correctly folded protein. These data suggest that this human secretory protein secreted into the medium of A. niger was not correctly folded, and that it escaped the endoplasmic reticulum folding control systems. This is compared to the folding of G-CSF produced in bacteria and yeast.
Download full-text PDF |
Source |
---|
Biomaterials
December 2024
School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China.
In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, United States.
Introduction: The immune-mediated destruction of insulin-producing β-cells characterizes type 1 diabetes. Nevertheless, exocrine pancreatic enzymes, including amylase, lipase, and trypsin, are also significantly reduced in type 1 diabetes. With an immunotherapy now approved to treat early-stage type 1 diabetes, biomarkers to delineate response to treatment are needed.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Electronic address:
At present, mid-sized binding peptides have emerged as a new class of drug modalities. We have de novo designed a helix-loop-helix (HLH) peptide (MW: ∼4,500), constructed phage-displayed libraries, and screened the libraries against a variety of disease-related proteins to successfully obtain molecular-targeting HLH peptides. The next essential step in developing HLH peptides into therapeutics involves affinity engineering to optimize binding affinity and specificity.
View Article and Find Full Text PDFIntern Med
December 2024
Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Japan.
We herein report a case of cutaneous squamous cell carcinoma (SCC) characterized by paraneoplastic hypercalcemia-leukocytosis syndrome. The patient presented with systemic symptoms, including anorexia, a fever, and a tumoral lesion on the upper arm. Laboratory test results revealed hypercalcemia and leukocytosis.
View Article and Find Full Text PDFBiochem Pharmacol
November 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Uveitis, an ocular autoimmune disease that poses a significant threat to vision, is caused by immune cells erroneously attacking retinal cells and currently lacks specific and effective therapeutic interventions. The CXC chemokine receptor 3 (CXCR3) facilitates the migration of immune cells to sites of inflammation. AMG487, a CXCR3 antagonist, holds potential for treating autoimmune diseases by blocking immunes cells chemotaxis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!