Purpose: This study aimed to characterize changes in deoxyhemoglobin ([HHb]) response dynamics in boys and girls during ramp incremental exercise to investigate whether the reduced peak oxygen uptake (peak V˙O2) in girls is associated with poorer matching of muscle O2 delivery to muscle O2 utilization, as evidenced by a more rapid increase in [HHb].
Methods: Fifty-two children (31 boys, 9.9 ± 0.6 yr, 1.38 ± 0.07 m, 31.70 ± 5.78 kg) completed ramp incremental exercise on a cycle ergometer during which pulmonary gas exchange and muscle oxygenation parameters were measured.
Results: When muscle [HHb] was expressed against absolute work rate and V˙O2, girls had an earlier change in [HHb], as evidenced by the lower c/d parameter (girls, 54 ± 20 W, vs boys, 67 ± 19 W, P = 0.023; girls, 0.82 ± 0.28 L·min(-1), vs boys, 0.95 ± 0.19 L·min(-1), P = 0.055) and plateau (girls, 85 ± 12 W, vs boys, 99 ± 18 W, P = 0.031; girls, 1.02 ± 0.25 L·min(-1), vs boys, 1.22 ± 0.28 L·min(-1), P = 0.014). However, when expressed against relative work rate or V˙O2, there were no sex differences in ([HHb]) response dynamics (all P > 0.20). Significant correlations were observed between absolute and fat-free mass normalized peak V˙O2 and the HHb c/d and plateau parameters when expressed against absolute work rate or V˙O2. Furthermore, when entered into a multiple regression model, the [HHb] plateau against absolute V˙O2 contributed 12% of the variance in peak V˙O2 after adjusting for fat-free mass, gas exchange threshold, and body fatness (model R2 = 0.81, P < 0.001).
Conclusions: The sex difference in peak V˙O2 in 9- to 10-yr-old children is, in part, related to sex-specific changes in muscle O2 extraction dynamics during incremental exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000000609 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!