Zinc (Zn) is often supplemented at elevated concentrations in swine diets, particularly in piglets, to prevent enteric infections and promote growth. Previous studies from Denmark have suggested a genetic linkage and a phenotypic association between Zn resistance, encoded by czrC, and methicillin-resistance conferred by mecA in Staphylococcus aureus. Such an association has not been reported in the U.S. swine population. We conducted an analysis of the effects of Zn, supplemented as zinc oxide (ZnO), on the nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) in nursery (n=40) and finisher pigs (n=40) enrolled in a nutritional study. Nasal swabs, collected from nursery and finisher pigs, were inoculated onto MRSA CHROMagar and presumptive MRSA colonies were tested for the presence of mecA and czrC genes by polymerase chain reaction. Zinc susceptibility was determined by the agar dilution method. The prevalence of mecA-positive MRSA was 10% (4/40) and 20% (8/40) among nursery and finisher pigs, respectively. Of the 12 mecA-positive S. aureus isolates, 7 had the czrC gene (58.3%) compared to none among the 68 mecA-negative isolates. The presence of both mecA (p=0.002) and czrC (p=0.006) genes were positively associated with higher levels of Zn supplementation. The median minimum inhibitory concentrations of Zn for czrC-positive and czrC-negative isolates were 12 and 2 mM, respectively (p<0.0001). The link between czrC and mecA genes suggests the importance of elevated Zn supplementation in the co-selection and propagation of methicillin resistance among S. aureus in pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2014.1851DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
12
finisher pigs
12
nasal carriage
8
methicillin-resistant staphylococcus
8
nursery finisher
8
presence meca
8
carriage meca-positive
4
meca-positive methicillin-resistant
4
aureus
4
pigs
4

Similar Publications

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

A multifunctional photothermal electrospun PLGA/MoS@Pd nanofiber membrane for diabetic wound healing.

Regen Biomater

December 2024

Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.

View Article and Find Full Text PDF

Unlabelled: Today, about 15.0% of odontogenic pathology is caused by (). The aim of the study was to predict the development of antimicrobial resistance of based on retrospective data.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the biofilm formation abilities of clinical strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes.

Methodology: In this study, a total of 60  strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the gene.

View Article and Find Full Text PDF

for targeting MRSA virulence: and studies.

Heliyon

January 2025

Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon.

The present study reports the characterization of the phytochemical content and the antibacterial activity of ethanolic extracts from the leaves (LE) and stems (SE) of against Methicillin resistant (MRSA. Important functional groups were determined by analyzing the FTIR spectra of LE and SE. The phytochemical profiles were analyzed by GC-MS, and these characterized the chemicals according to retention periods and peak regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!