Background: Exocytosis is integral to root growth: trafficking components of systems that control growth (e.g., PIN auxin transport proteins) to the plasma membrane, and secreting materials that expand the cell wall to the apoplast. Spatiotemporal regulation of exocytosis in eukaryotes often involves the exocyst, an octameric complex that tethers selected secretory vesicles to specific sites on the plasma membrane and facilitates their exocytosis. We evaluated Arabidopsis lines with mutations in four exocyst components (SEC5, SEC8, EXO70A1 and EXO84B) to explore exocyst function in primary root growth.

Results: The mutants have root growth rates that are 82% to 11% of wild-type. Even in lines with the most severe defects, the organization of the quiescent center and tissue layers at the root tips appears similar to wild-type, although meristematic, transition, and elongation zones are shorter. Reduced cell production rates in the mutants are due to the shorter meristems, but not to lengthened cell cycles. Additionally, mutants demonstrate reduced anisotropic cell expansion in the elongation zone, but not the meristematic zone, resulting in shorter mature cells that are similar in shape to wild-type. As expected, hypersensitivity to brefeldin A links the mutant root growth defect to altered vesicular trafficking. Several experimental approaches (e.g., dose-response measurements, localization of signaling components) failed to identify aberrant auxin or brassinosteroid signaling as a primary driver for reduced root growth in exocyst mutants.

Conclusions: The exocyst participates in two spatially distinct developmental processes, apparently by mechanisms not directly linked to auxin or brassinosteroid signaling pathways, to help establish root meristem size, and to facilitate rapid cell expansion in the elongation zone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302519PMC
http://dx.doi.org/10.1186/s12870-014-0386-0DOI Listing

Publication Analysis

Top Keywords

root growth
20
rapid cell
8
meristem size
8
root
8
primary root
8
plasma membrane
8
cell expansion
8
expansion elongation
8
elongation zone
8
auxin brassinosteroid
8

Similar Publications

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Electric heaters are widely used owing to their portability, fast heating, single-focus heating, and energy efficiency advantages. Manufacturers provide customers with information on the power consumption and energy efficiency classes of heaters but do not provide any information on heating patterns. Knowing the heating pattern enables users to select the correct heater, which has a significant effect on comfort, health, energy efficiency, industrial process performance, plant growth, and climate change.

View Article and Find Full Text PDF

Monitoring the Concentrations of Na, Mg, Ca, Cu, Fe, and K in at Different Growth Stages by NIR Spectroscopy Coupled with Chemometrics.

Foods

January 2025

Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.

, an edible seaweed, plays a crucial role in our daily lives by providing essential nutrients, including minerals, to the human body. The detection of mineral content during different growth stages of benefits the goals of ensuring product quality, meeting diverse consumer needs, and achieving quality classification. Currently, the determination of minerals in primarily relies on inductively coupled plasma mass spectrometry and other methods, which are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Phosphoenolpyruvate (PEP) plays a key role in the development of plants and exists in a wide variety of species. Research on the metabolic activities of PEP in plants has received increasing attention. PEP regulates multiple processes in plant growth and development.

View Article and Find Full Text PDF

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!