Classification, clinical features, and genetics of neural tube defects.

Saudi Med J

Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Kingdom of Saudi Arabia. E-mail:

Published: December 2014

Neural tube defects (NTDs) constitute a major health burden (0.5-2/1000 pregnancies worldwide), and remain a preventable cause of still birth, neonatal, and infant death, or significant lifelong handicaps. The malformations result from failure of the neural folds to fuse in the midline, and form the neural tube between the third and the fourth week of embryonic development. This review article discusses their classification, clinical features, and genetics. Most NTDs are sporadic and both genetic, and non-genetic environmental factors are involved in its etiology. Consanguinity was suggested to contribute to the high incidence of NTDs in several countries, including Saudi Arabia. Syndromes, often associated with chromosomal anomalies, account for <10% of all NTDs; but a higher proportion (20%) has been documented in Saudi Arabia. Genetic predisposition constitutes the major underlying risk factor, with a strong implication of genes that regulate folate one-carbon metabolism and planar cell polarity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362100PMC

Publication Analysis

Top Keywords

neural tube
12
classification clinical
8
clinical features
8
features genetics
8
tube defects
8
neural
4
genetics neural
4
defects neural
4
defects ntds
4
ntds constitute
4

Similar Publications

Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.

View Article and Find Full Text PDF

Vascularized human brain organoids: current possibilities and prospects.

Trends Biotechnol

January 2025

Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:

Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are complex multifactorial disorders in the neurulation of the brain and spinal cord that develop in humans between 21 and 28 days of conception. Neonates with NTDs may experience morbidity and mortality, with severe social and economic consequences. Therefore, the aim of this systematic review and meta-analysis is to assess the pooled prevalence and determinants for neural tube defects among newborns in Ethiopia.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

Elevated Serum Homocysteine Levels Impair Embryonic Neurodevelopment by Dysregulating the Heat Shock Proteins.

Dev Neurobiol

January 2025

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.

Observational studies have found that elevated serum homocysteine (Hcy) levels during pregnancy may be associated with the occurrence of neural tube defects (NTDs). However, the effect of Hcy on fetal neural development and its underlying molecular mechanisms remains unclear. To uncover the molecular mechanism, we analyzed the serum Hcy concentration in pregnant women with normal and abnormal pregnancy outcomes and treated zebrafish model embryos with high Hcy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!