The inhibition of voltage-gated potassium channels (Kv) plays an important role in the cerebral hypoxia-induced cell death. The activity of Kv can be inhibited by 15-hydroxyeicosatetrienoic acid (15-HETE). Therefore, as the key enzyme which catalyzed the formation of 15-HETE, 15-LOX may be involved in Kv inhibition induced by cerebral hypoxia. In our study, Wistar rats cerebral arterial smooth muscle cells (CASMCs) were placed under the condition of hypoxia and control, 15-LOX was proved involved in hypoxia-induced vasoconstriction. Furthermore, 15-LOX gene over expression under normoxic condition, as well as 15-LOX gene knockout or inhibition under hypoxic condition was performed to investigate the expression and activity of Kv1.5 and Kv2.1 in CASMCs. Results showed that both hypoxia and 15-LOX over expression could cause Kv1.5 and Kv2.1 suppression, but no suppression was observed under hypoxic condition when 15-LOX gene was knockout or inhibited, which made 15-LOX a new target for the treatment of cerebral hypoxia. In conclusion, AA/15-LOX/15-HETE induces vasoconstriction by down-regulating Kv channels, and Kv2.1/1.5 channels are the targets. Our study also suggests a therapeutic strategy to improve ischemic vascular occlusion by lowering 15-HETE level and preventing Kv channel down-regulation, which makes 15-LOX as a new target for the treatment of cerebral hypoxia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276183 | PMC |
Genes Brain Behav
February 2025
Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy.
Pathogenic variants are associated with neonatal epilepsies, ranging from self-limited neonatal epilepsy to -developmental and epileptic encephalopathy (DEE). In this study, next-generation sequencing was performed, applying a panel of 142 epilepsy genes on three unrelated individuals and affected family members, showing a wide variability in the epileptic spectrum. The genetic analysis revealed two likely pathogenic missense variants (c.
View Article and Find Full Text PDFMolecules
December 2024
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
Scorpion venom contains various bioactive peptides, many of which exhibit insecticidal activity. The majority of these peptides have a cystine-stabilized α-helix/β-sheet (CSαβ) motif. In addition to these peptides, scorpion venom also contains those with a cystine-stabilized α-helix/α-helix (CSαα) motif, which are known as κ-KTx peptides.
View Article and Find Full Text PDFCell
January 2025
Department of Molecular and Cell Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Electronic address:
Understanding protein function would be facilitated by direct, real-time observation of chemical kinetics in the atomic structure. The selectivity filter (SF) of the K channel provides an ideal model, catalyzing the dehydration and transport of K ions across the cell membrane through a narrow pore. We used a "pump-probe" method called electric-field-stimulated time-resolved X-ray crystallography (EFX) to initiate and observe K conduction in the NaK2K channel in both directions on the timescale of the transport process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!