A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. | LitMetric

Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a.

Circulation

From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan (C.-Y.H., J.-W.C., S.-J.L., P.-H.H.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (F.-M.L., H.-D.H.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.); and Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China (Y.Z., J.Y.-J.S.).

Published: March 2015

AI Article Synopsis

  • - Oxidative stress activates the endothelial innate immune response, leading to issues with nitric oxide production and overall endothelial function, primarily through the action of SREBP2 and microRNA-92a (miR-92a).
  • - Experiments with cultured endothelial cells, zebrafish, and mice showed that SREBP2-induced miR-92a disrupts key factors like sirtuin 1 and Krüppel-like factors, which activates inflammasomes and inhibits nitric oxide production, resulting in vascular issues.
  • - The study links elevated miR-92a levels with poor vascular function in patients with coronary artery disease, suggesting that targeting this mechanism could aid in diagnosing and treating related disorders.

Article Abstract

Background: Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium.

Methods And Results: Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β.

Conclusions: Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351177PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013675DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
endothelial
12
endothelial innate
12
nitric oxide
12
stress activates
8
activates endothelial
8
innate immunity
8
sterol regulatory
8
protein srebp2
8
srebp2 transactivation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!