Background: Abdominal aortic aneurysm (AAA) rupture risk is currently determined based on size and symptoms. This approach does not address the rupture risk associated with small aneurysms. Given the role of matrix metalloproteinases (MMPs) in AAA weakening and rupture, we investigated the potential of MMP-targeted imaging for detection of aneurysm biology and prediction of outcome in a mouse model of AAA with spontaneous rupture.
Methods And Results: Fifteen-week-old mice (n=66) were infused with angiotensin II for 4 weeks to induce AAA. Saline-infused mice (n=16) served as control. The surviving animals underwent in vivo MMP-targeted micro-single photon emission computed tomographic/computed tomographic imaging, using RP805, a technetium-99m-labeled MMP-specific tracer, followed by ex vivo planar imaging, morphometry, and gene expression analysis. RP805 uptake in suprarenal aorta on micro-single photon emission computed tomographic images was significantly higher in animals with AAA when compared with angiotensin II-infused animals without AAA or control animals. CD68 expression and MMP activity were increased in AAA, and significant correlations were noted between RP805 uptake and CD68 expression or MMP activity but not aortic diameter. A group of angiotensin II-infused animals (n=24) were imaged at 1 week and were followed up for additional 3 weeks. RP805 uptake in suprarenal aorta at 1 week was significantly higher in mice that later developed rupture or AAA. Furthermore, tracer uptake at 1 week correlated with aortic diameter at 4 weeks.
Conclusions: MMP-targeted imaging reflects vessel wall inflammation and can predict future aortic expansion or rupture in murine AAA. If confirmed in humans, this may provide a new paradigm for AAA risk stratification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284949 | PMC |
http://dx.doi.org/10.1161/CIRCIMAGING.114.002471 | DOI Listing |
J Nucl Med
August 2017
Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut
Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance.
View Article and Find Full Text PDFJ Nucl Med
June 2015
Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut VA Connecticut Healthcare Systems, West Haven, Connecticut
Unlabelled: Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Matrix metalloproteinases (MMPs) are upregulated in CAVD and contribute to valvular remodeling and calcification. We investigated the feasibility and correlates of MMP-targeted molecular imaging for detection of valvular biology in CAVD.
View Article and Find Full Text PDFCirc Cardiovasc Imaging
January 2015
From the Section of Cardiovascular Medicine and Cardiovascular Research Center (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.), Department of Diagnostic Radiology (C.L.), Yale University School of Medicine, New Haven, CT; VA Connecticut Healthcare System, West Haven (R.G., M.R., L.N., J.Z., J.-J.J., Y.Y, M.d.R., K.H., M.M.S.); and Lantheus Medical Imaging, North Billerica, MA (S.P.R.).
Background: Abdominal aortic aneurysm (AAA) rupture risk is currently determined based on size and symptoms. This approach does not address the rupture risk associated with small aneurysms. Given the role of matrix metalloproteinases (MMPs) in AAA weakening and rupture, we investigated the potential of MMP-targeted imaging for detection of aneurysm biology and prediction of outcome in a mouse model of AAA with spontaneous rupture.
View Article and Find Full Text PDFJ Nucl Cardiol
April 2014
Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT.
Background: Lipid lowering is a mainstay of modern therapeutic approach to atherosclerosis. We sought to evaluate matrix metalloproteinase (MMP)-targeted microSPECT imaging for tracking of the effect of lipid-lowering interventions on plaque biology in atherosclerotic mice in vivo.
Methods And Results: ApoE(-/-) mice fed on a high fat diet (HFD) for 2 months were randomly assigned to continuation of HFD, HFD plus simvastatin, HFD plus fenofibrate and high fat withdrawal (HFW).
Circ Cardiovasc Imaging
July 2011
Experimental Nuclear Cardiology Laboratory, Yale University School of Medicine, New Haven, CT 06520-8017, USA.
Background: Matrix metalloproteinases (MMPs) are known to modulate left ventricular (LV) remodeling after a myocardial infarction (MI). However, the temporal and spatial variation of MMP activation and their relationship to mechanical dysfunction after MI remain undefined.
Methods And Results: MI was surgically induced in pigs (n = 23) and cine magnetic resonance (MR) and dual-isotope hybrid single-photon emission CT (SPECT)/CT imaging obtained using thallium-201 and a technetium-99m-labeled MMP targeted tracer ((99m)Tc-RP805) at 1, 2, and 4 weeks post-MI along with controls (n = 5).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!