Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke.

Stroke

From the Neuroscience Research Centre, Cardiovascular & Cell Sciences, St. George's University of London, London, United Kingdom (P.A.-S., S.L.); Department of Neurology, Center for Human Genetic Research, Massachusetts General Hospital, Boston (W.D., C.R.Z., L.C., G.J.F., F.R., K.F., A.K., J.R., N.S.R.); Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (M.T., S.B., H.S.M.); Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (F.R., J.R.); Stroke Prevention Research Unit, Nuffield Department of Neuroscience, University of Oxford, Oxford, United Kingdom (P.M.R.); Division of Clinical Neurosciences, Neuroimaging Sciences, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom (C.S.); Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy (G.B.B.); Department of Neurology, Mayo Clinic, Jacksonville, FL (J.F.M.); Centre for Clinical Epidemiology and Biostatistics, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia (C.L.); Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany (M.D.); and Munich Cluster for Systems Neurology (SyNergy), Center for Stroke and Dementia Research, Munich, Germany (M.D.).

Published: February 2015

Background And Purpose: Epidemiological studies suggest that white matter hyperintensities (WMH) are extremely heritable, but the underlying genetic variants are largely unknown. Pathophysiological heterogeneity is known to reduce the power of genome-wide association studies (GWAS). Hypertensive and nonhypertensive individuals with WMH might have different underlying pathologies. We used GWAS data to calculate the variance in WMH volume (WMHV) explained by common single nucleotide polymorphisms (SNPs) as a measure of heritability (SNP heritability [HSNP]) and tested the hypothesis that WMH heritability differs between hypertensive and nonhypertensive individuals.

Methods: WMHV was measured on MRI in the stroke-free cerebral hemisphere of 2336 ischemic stroke cases with GWAS data. After adjustment for age and intracranial volume, we determined which cardiovascular risk factors were independent predictors of WMHV. Using the genome-wide complex trait analysis tool to estimate HSNP for WMHV overall and within subgroups stratified by risk factors found to be significant in multivariate analyses.

Results: A significant proportion of the variance of WMHV was attributable to common SNPs after adjustment for significant risk factors (HSNP=0.23; P=0.0026). HSNP estimates were higher among hypertensive individuals (HSNP=0.45; P=7.99×10(-5)); this increase was greater than expected by chance (P=0.012). In contrast, estimates were lower, and nonsignificant, in nonhypertensive individuals (HSNP=0.13; P=0.13).

Conclusions: A quarter of variance is attributable to common SNPs, but this estimate was greater in hypertensive individuals. These findings suggest that the genetic architecture of WMH in ischemic stroke differs between hypertensives and nonhypertensives. Future WMHV GWAS studies may gain power by accounting for this interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306538PMC
http://dx.doi.org/10.1161/STROKEAHA.114.006849DOI Listing

Publication Analysis

Top Keywords

hypertensive nonhypertensive
12
ischemic stroke
12
risk factors
12
genetic architecture
8
white matter
8
matter hyperintensities
8
differs hypertensive
8
nonhypertensive individuals
8
gwas data
8
attributable common
8

Similar Publications

Introduction: Ischemic stroke in patients with a systemic tumor disease or cancer not in remission (active tumors) is less well understood. Some aspects of such paraneoplastic strokes remind on a generalized cerebrovascular disorder. We hypothesized that cerebrovascular regulation in active tumor patients with a stroke is different from other patients with stroke who have no active tumor disease.

View Article and Find Full Text PDF

Purpose: There are limited reports on the potential link between Lp(a) and ARDM. Thus, we examined the relationship between Lp(a) and ARDM among hypertensive patients.

Methods: We used echocardiography to measure ARDM in 513 consecutively hospitalized patients.

View Article and Find Full Text PDF

: Investigating the importance and potential causal effects of serum lipid biomarkers in the management of hypertension is vital, as these factors positively impact the prevention and control of cardiovascular disease (CVD). : We surveyed 3373 urban residents using longitudinal data from the CHARLS database, collected between 2015 and 2020. Pearson correlation methods were employed to explore the relationships among the numerical variables.

View Article and Find Full Text PDF

Smoking is a well known risk factor for coronary artery disease (CAD). However, the effects of smoking on gene expression in the blood of CAD subjects in Hungary have not been extensively studied. This study aimed to identify differentially expressed genes (DEGs) associated with smoking in CAD subjects.

View Article and Find Full Text PDF

 The present study aimed to evaluate the metabolic profile of synovial fluid in patients with knee osteoarthritis (KOA) and its correlation with clinical data.  We collected synovial fluid samples from the knees of 50 subjects with KOA undergoing total knee arthroplasty from October 2019 to December 2020. For each patient, we evaluated the clinical data from the medical record, the radiographic osteoarthritis grade, and the preoperative fasting blood glucose levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!