Ultrapure oligochitosans have been recently reported as efficient non-viral vectors for the delivery of pCMS-EGFP plasmid (5.5kbp) to the cornea and retina. However, the delivery of oncolytic adenoviral plasmids (40kbp) represents a unique challenge. In this work, we elaborated self assembled O15 and O25 UOC/pAdTLRGD polyplexes, and we studied the influence of the N/P ratio, the pH of the transfection medium and the salt concentration on the particle size and zeta potential by an orthogonal experimental design. All polyplexes showed a particle size lower than 200nm and a positive zeta potential. These parameters were influenced by the N/P ratio, salt concentration, and pH of the transfection medium. The selected polyplexes were able to bind, release, and protect the plasmid from DNase degradation. Transfection experiments in HEK293 and A549 cell lines demonstrated that UOC/pAdTLRGD polyplexes were able to deliver the plasmid and transfect both cell lines. These results suggest that O15 and O25 UOC based polyplexes are suitable for future in vivo applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2014.12.062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!