Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.12.054 | DOI Listing |
Hear Res
January 2025
Department of Neuroscience, University of Wisconsin-Madison, WI 53706, USA.
We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.
View Article and Find Full Text PDFElife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:
Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
Sensorineural hearing loss (SNHL) is an increasingly prevalent sensory disorder, but the underlying mechanisms remain poorly understood. Adaptor related protein complex 2 subunit beta 1 (AP2B1) has been indicated to be detectable in mature cochleae. Nonetheless, it is unclear whether AP2B1 is implicated in the progression of SNHL.
View Article and Find Full Text PDFRegen Ther
March 2025
Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!