The areca nut-chewing habit is common in Southeast Asia, India, and Taiwan, and arecoline is the most abundant and potent component in the areca nut. The effects of arecoline on birth defects have been explored in many species, including chicken, mice, and zebrafish. The effects of arecoline on embryos after long-term exposure are well established; however, the effects of short-term embryo exposure to arecoline are not understood. Using zebrafish, we study the effects of short-term exposure of arecoline on embryos to model the human habit of areca nut-chewing during early pregnancy. Arecoline, at concentrations from 0.001% to 0.04%, was administered to zebrafish embryos from 4 to 24 hours post fertilization. The morphological changes, survival rates, body length, and skeletal muscle fiber structure were then investigated by immunohistochemistry, confocal microscopy, and conventional electron microscopy. With exposure of embryos to increasing arecoline concentrations, we observed a significant decline in the hatching and survival rates, general growth retardation, lower locomotor activity, and swimming ability impairment. Immunofluorescent staining demonstrated a loose arrangement of myosin heavy chains, and ultrastructural observations revealed altered myofibril arrangement and swelling of the mitochondria. In addition, the results of flow-cytometry and JC-1 staining to assay mitochondria activity, as well as reverse transcription-polymerase chain reaction analyses of functional gene expression, revealed mitochondrial dysfunctions after exposure to arecoline. We confirmed that short-term arecoline exposure resulted in retarded embryonic development and decreased locomotor activity due to defective somitic skeletal muscle development and mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298148 | PMC |
http://dx.doi.org/10.1089/zeb.2014.1010 | DOI Listing |
Aging (Albany NY)
October 2024
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
J Food Sci Technol
October 2024
College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083 People's Republic of China.
Pestic Biochem Physiol
September 2024
The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China. Electronic address:
Arecoline (ACL), an active constituent derived from Areca catechu L., exerts various pharmacological effects and serves as a potential plant-based insecticide. However, the effects of ACL on Spodoptera litura, an important and widely distributed agricultural pest, remain unknown.
View Article and Find Full Text PDFToxins (Basel)
August 2024
School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
As the areca nut market is expanding, there is a growing concern regarding areca nut toxicity. Areca nut alkaloids are the major risky components in betel nuts, and their toxic effects are not fully understood. Here, we investigated the parental and transgenerational toxicity of varied doses of areca nut alkaloids in .
View Article and Find Full Text PDFJ Neurosci Methods
November 2024
Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 194021, Russia. Electronic address:
Background: Although zebrafish are increasingly utilized in biomedicine for CNS disease modelling and drug discovery, this generates big data necessitating objective, precise and reproducible analyses. The artificial intelligence (AI) applications have empowered automated image recognition and video-tracking to ensure more efficient behavioral testing.
New Method: Capitalizing on several AI tools that most recently became available, here we present a novel open-access AI-driven platform to analyze tracks of adult zebrafish collected from in vivo neuropharmacological experiments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!