Facing the explosive growth of biological sequence data, such as those of protein/peptide and DNA/RNA, generated in the post-genomic age, many bioinformatical and mathematical approaches as well as physicochemical concepts have been introduced to timely derive useful informations from these biological sequences, in order to stimulate the development of medical science and drug design. Meanwhile, because of the rapid penetrations from these disciplines, medicinal chemistry is currently undergoing an unprecedented revolution. In this minireview, we are to summarize the progresses by focusing on the following six aspects. (1) Use the pseudo amino acid composition or PseAAC to predict various attributes of protein/peptide sequences that are useful for drug development. (2) Use pseudo oligonucleotide composition or PseKNC to do the same for DNA/RNA sequences. (3) Introduce the multi-label approach to study those systems where the constituent elements bear multiple characters and functions. (4) Utilize the graphical rules and "wenxiang" diagrams to analyze complicated biomedical systems. (5) Recent development in identifying the interactions of drugs with its various types of target proteins in cellular networking. (6) Distorted key theory and its application in developing peptide drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573406411666141229162834 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!