The dispersibility and liquid crystal formation of a self-assembled lipid nanotube (LNT) was investigated in a variety of aqueous solutions. As the lipid component, we chose a bipolar lipid with glucose and tetraglycine headgroups, which self-assembled into an LNT with a small outer diameter of 16 to 17 nm and a high axial ratio of more than 310. The LNT gave a stable colloidal dispersion in its dilute solutions and showed spontaneous liquid crystal (LC) alignment at relatively low concentrations and in a pH region including neutral pH. The LNT samples with shorter length distributions were prepared by sonication, and the relationship between the LNT axial ratio and the minimum LC formation concentration was examined. The robustness of the LNT made the liquid crystal stable in mixed solvents of water/ethanol, water/acetone, and water/tetrahydrofuran (1:1 by volume) and at a temperature of up to 90 °C in water. The observed colloidal behavior of the LNT was compared to those of similar 1D nanostructures such as a phospholipid tubule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la5042772 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
Liquid crystal elastomers (LCEs) exhibit reversible shape morphing behavior when cycled above their nematic-to-isotropic transition temperature. During extrusion-based 3D printing, LCE inks are subjected to coupled shear and extensional flows that can be harnessed to spatially control the alignment of their nematic director along prescribed print paths. Here, we combine experiment and modeling to elucidate the effects of ink composition, nozzle geometry, and printing parameters on director alignment.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil.
View Article and Find Full Text PDFChemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA.
The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.
View Article and Find Full Text PDFChemphyschem
January 2025
Christ University, Centre for Advanced Research and Development, Hosur Road, Central Campus, 560029, India, 560029, Bengaluru, INDIA.
The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!