Extensive evidence suggests that soluble ligands and their receptors mediate human preimplantation embryo development and implantation. Progress in this complex area has been ongoing since the 1980s, with an ever-increasing list of candidates. This article specifically reviews evidence of soluble ligands and their receptors in the human preimplantation stage embryo and female reproductive tract. The focus will be on candidates produced by the human preimplantation embryo and those eliciting developmental responses in vitro, as well as endometrial factors related to implantation and receptivity. Pathways to clinical translation, including innovative diagnostics and other technologies, are also highlighted, drawing from this collective evidence toward facilitating joint improvements in embryo quality and endometrial receptivity. This strategy could not only benefit clinical outcomes in reproductive medicine but also provide broader insights into the peri-implantation period of human development to improve fetal and neonatal health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/er.2014-1046 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.
View Article and Find Full Text PDFChemistry
January 2025
University of Victoria, Chemistry, 3800 Finnerty Rd, V8P 5C2, Victoria, CANADA.
We report the synthesis, characterization, and catalytic applications of N,N'-diaryl diazabutadiene (DAB) Ni(0) complexes stabilized by alkene ligands. These complexes are soluble and stable in several organic solvents, making them ideal candidates for in situ catalyst formation during high-throughput experimentation (HTE). We used HTE to evaluate these Ni(0) precatalysts in a variety of Suzuki and C-N coupling reactions, and they were found to have equal or better performance than the still-standard Ni(0) source, Ni(COD)2.
View Article and Find Full Text PDFNarra J
December 2024
Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.
Skin aging is one of the degenerative processes influenced by tyrosinase, elastase, collagenase, hyaluronidase, and matrix metalloproteinase-9 (MMP9) activity. One promising avenue for discovering antiaging therapeutics is the peptides from the spine. The aim of this study was to explore the potential of peptides from spine as a multitarget inhibitor for recombinant antiaging therapies through in silico approaches.
View Article and Find Full Text PDFChem Asian J
January 2025
Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA.
The two-fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene, 1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C-C bond converts the central eight-membered ring into a twisted core with two fused five-membered rings. This C-C bond of 1.589(3)-1.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.
The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!