To reveal the mechanism of submerged plants decline in progressively eutrophicated freshwaters, physiological responses of Vallisneria natans to epiphytic algae were studied in simulation lab by measuring plant physiological indexes of chlorophyll content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity based on a 2 × 4 factorial design with two epiphytic conditions (with epiphytic algae and without) and four levels of N and P concentrations in water (N-P[mg.L(-1)]: 0.5, 0.05; 2.5, 0.25; 4.5, 0.45; 12.5, 1.25). Compared with control (non-presence of epiphytic algae), chlorophyll contents of V. natans were significantly decreased (p < 0.01) for the presence of epiphytic algae under any concentrations of N and P in water bodies. While the presence of epiphytic algae induced peroxidation of membrane lipids, MDA contents of V. natans had significantly increased (p < 0.05) by comparing with control. SOD activity significantly enhanced (p < 0.05) with the presence of epiphytic algae in the treatments of T2 and T3 in the whole culture process by comparing with control, sometimes reaching an extremely significant level (p < 0.01). However, in the treatments of T1 and T4, SOD activity had no obvious change with the presence of epiphytic algae (p < 0.05) by comparing with control. At the end of the experiment, the effects of epiphytic algae on chlorophyll content and SOD activity in the leaves of V. natans were increased at first and then decreased with the concentrations of N and P in water, and MDA content became higher with the increase of N and P. concentrations. Repeated measurement data testing showed that the effects of epiphytic algae on the chlorophyll content and MDA content and SOD activity were significant, respectively (p < 0.001), the effects of epiphytic algae were combining with effects of concentrations of N and P (p < 0.001), respectively, and their interaction (p < 0.001). Our observations confirmed that this prediction: the growth of epiphytic algae directly produced adverse effects on physiology of V. natans and epiphytic algal biomass were positively correlated with nutrient available in the water column.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-3998-x | DOI Listing |
J Fish Biol
December 2024
Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
Investigating how multiple invasive fish species with similar ecological traits respond to different environmental conditions is crucial to understanding their successful invasion and coexistence. Here, we used stomach content analysis and stable isotope analysis to analyse the effects of water level fluctuation on the trophic niche plasticity of three dominant co-occurring invasive tilapia species (Coptodon zillii, Sarotherodon galilaeus, and Oreochromis niloticus) in the Shanmei Reservoir, southern China. We found that the tilapia species exhibited an iliophagous habit with dietary variations between the high-water (HW) and low-water (LW) level periods.
View Article and Find Full Text PDFMicroorganisms
November 2024
College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China.
Mar Environ Res
November 2024
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China. Electronic address:
Seagrass beds, as an important coastal blue carbon ecosystem, are excellent at storing organic carbon and mitigating the impacts of global climate change. However, seagrass beds are under threat due to increased human activities and ubiquitous presence of microplastics (MPs) in marine environments. Bibliometric analysis shows that the distribution and accumulation of microplastics in seagrass beds has been widely documented worldwide, but their impacts on seagrass beds, particularly on carbon sequestration capacity, have not been given sufficient attention.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Microbiol Resour Announc
November 2024
Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, Puerto Rico, USA.
Here, we report a draft metagenome-assembled genome and annotation of sp. obtained from the sequenced genome of . The genome completeness was 97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!