AI Article Synopsis

  • MMP-2 is a marker in metastatic cancer tissues linked to poor prognosis and serves as a target for tumor imaging.
  • Scientists created a protein nanocage that has a peptide (CTT) which binds to MMP-2.
  • These engineered nanocages can specifically accumulate in tumors, allowing for imaging of cancer activity using near-infrared fluorescence, potentially aiding in noninvasive detection methods.

Article Abstract

Matrix metalloproteinase 2 (MMP-2) in metastatic cancer tissue, which is associated with a poor prognosis, is a potential target for tumor imaging in vivo. Here, we describe a metastatic cancer cell-targeted protein nanocage. An MMP-2-binding peptide, termed CTT peptide (CTTHWGFTLC), was conjugated to the surface of a naturally occurring heat shock protein nanocage by genetic modification. The engineered protein nanocages showed a binding affinity for MMP-2 and selective uptake in cancer cells that highly expressed MMP-2 in vitro. In near-infrared fluorescence imaging, the nanocages showed specific and significant accumulation in tumor tissue after intravenous injection in vivo. These protein nanocages conjugated with CTT peptide could be potentially applied to a noninvasive near-infrared fluorescence detection method for imaging gelatinase activity in metastatic tumors in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307240PMC
http://dx.doi.org/10.3390/ijms16010148DOI Listing

Publication Analysis

Top Keywords

protein nanocages
12
metastatic cancer
8
protein nanocage
8
ctt peptide
8
near-infrared fluorescence
8
protein
5
systemic delivery
4
delivery protein
4
nanocages
4
nanocages bearing
4

Similar Publications

High-visual-resolution colorimetric immunoassay with attomolar sensitivity using kinetically controlled growth of Ag in AuAg nanocages and poly-enzyme-boosted tyramide signal amplification.

Talanta

December 2024

Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China. Electronic address:

Colorimetric enzyme-linked immunosorbent assays (CELISAs) have long been used for protein biomarker detection in diagnostics. Unfortunately, as confined by the monochromatic nature of detection signals and the limited catalytic activity of enzymes, CELISAs suffer from poor visual resolution and low sensitivity, hindering their effectiveness for early diagnostics in resource-limited settings. Herein, we report an ultrasensitive, high-visual-resolution CELISA (named PE-TSA-AuAg Cage-CELISA) that combines kinetically controlled growth of Ag in AuAg nanocages with poly-enzyme-boosted tyramide signal amplification (PE-TSA), enabling visual semiquantitative detection of protein biomarkers at attomolar levels with the naked eye.

View Article and Find Full Text PDF

Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials.

View Article and Find Full Text PDF

Four, eight or twenty C3 symmetric protein trimers can be arranged with tetrahedral, octahedral or icosahedral point group symmetry to generate closed cage-like structures. Viruses access more complex higher triangulation number icosahedral architectures by breaking perfect point group symmetry, but nature appears not to have explored similar symmetry breaking for tetrahedral or octahedral symmetries. Here we describe a general design strategy for building higher triangulation number architectures starting from regular polyhedra through pseudosymmetrization of trimeric building blocks.

View Article and Find Full Text PDF

Nanomaterials based on hollow gold nanospheres for cancer therapy.

Regen Biomater

October 2024

State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China.

Article Synopsis
  • * HGNs have superior properties, such as higher photothermal conversion efficiency and enhanced Raman scattering, making them preferable for targeted drug delivery and tumor imaging.
  • * The review highlights the synthesis methods for HGNs and their applications in cancer diagnostics and therapy, while also addressing current challenges for future advancements in HGN-based nanomaterials.
View Article and Find Full Text PDF
Article Synopsis
  • - Osteoarthritis (OA) is a common degenerative disease causing joint pain, deformity, and disability, with current treatments often being ineffective or having side effects.
  • - A new light-inducible nanomedicine has been developed to deliver both an anti-inflammatory drug (diacerein) and siRNA targeting nerve growth factor, potentially improving pain relief and treatment efficacy in OA.
  • - The nanomedicine, made with poly(-amino-ester)-coated gold nanocages, shows effective drug retention at the joint site, enhances chondrocyte survival during inflammation, and significantly supports joint repair in mouse models.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!