Introduction: Transducer of Cdc42-dependent actin assembly-1 (Toca-1) recruits actin regulatory proteins to invadopodia, and promotes breast tumor metastasis. Since metastatic breast tumors frequently harbor mutations in the tumor suppressor p53, we tested whether p53 regulates Toca-1 expression.
Methods: Normal mammary epithelial cells (HBL-100, MCF10A) and breast cancer cell lines expressing wild-type (WT) p53 (DU4475, MTLn3) were treated with camptothecin or Nutlin-3 to stabilize p53 to test effects on Toca-1 mRNA and protein levels. Chromatin immunoprecipitation (ChIP) assays were performed to identify p53 binding site in Toca-1 gene. Stable silencing of p53 and Toca-1 were performed in MTLn3 cells to test effects on invadopodia and cell invasion in vitro, and tumor metastasis in vivo.
Results: We observed that breast cancer cell lines with mutant p53 have high levels of Toca-1 compared to those with WT p53. Stabilization of WT p53 led to further reduction in Toca-1 mRNA and protein levels in normal breast epithelial cells and breast cancer cells. ChIP assays revealed p53 binding within intron 2 of toca1, and reduced histone acetylation within its promoter region upon p53 upregulation or activation. Stable silencing of WT p53 in MTLn3 cells led to increased extracellular matrix degradation and cell invasion compared to control cells. Interestingly, the combined silencing of p53 and Toca-1 led to a partial rescue of these effects of p53 silencing in vitro and reduced lung metastases in mice. In human breast tumors, Toca-1 levels were high in subtypes with frequent p53 mutations, and high Toca-1 transcript levels correlated with increased risk of relapse.
Conclusions: Based on these findings, we conclude that loss of p53 tumor suppressor function in breast cancers leads to upregulation of Toca-1, and results in enhanced risk of developing metastatic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332744 | PMC |
http://dx.doi.org/10.1186/s13058-014-0503-x | DOI Listing |
J Mol Med (Berl)
January 2025
Hospital Sensory Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, 36 Gongye Qi Road, Nanshan District, Shenzhen, 518067, China.
This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment.
View Article and Find Full Text PDFBiomacromolecules
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, PR China.
Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.
View Article and Find Full Text PDFEpigenomics
January 2025
Cancer Research Group, School of Life Health and Chemical Sciences, The Open University UK, Milton Keynes, UK.
Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).
View Article and Find Full Text PDFInt J Gynecol Cancer
January 2025
Department of Gynecology, European Institute of Oncology, IEO, IRCCS, Milan, Italy. Electronic address:
Objective: No biomarkers are available to predict treatment response in patients with endometrial cancers who undergo fertility-sparing treatment. Therefore, we aimed to evaluate the prognostic role of molecular classification.
Methods: Patients with endometrial cancer who underwent fertility-sparing treatment with progestins between 2005 and 2021 were retrospectively identified.
Int J Gynecol Cancer
January 2025
Nazionale dei Tumori di Milano, Fondazione IRCCS Istituto Gynecological Oncology Unit, Milan, Italy.
Objective: Endometrial cancers can be classified into 4 molecular sub-groups: (1) POLE mutated (POLEmut), (2) mismatch repair deficiency/microsatellite-instable (MMRd/MSI-H), (3) TP53-mutant or p53 abnormal (p53abn), and (4) no specific mutational profile (NSMP). Although molecular classification is increasingly applied in oncology, its role in guiding fertility-sparing treatments for endometrial cancer remains unclear. This study examines the prognostic role of molecular classification in fertility-sparing treatment and its potential to guide treatment decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!