The internalization of near-infrared fluorescently labeled cargos into living cells and tissues allows a highly sensitive detection without interference from skin, porphins or other fluorescent cell and tissue compounds. In this study, the uptake of labeled bovine serum albumin and an antibody, into fibrosarcoma (HT-1080) cells was triggered by the formation of non-covalent complexes with different cell-penetrating peptides; uptake efficiency and intracellular localization were determined. To improve selectivity of internalization into tumor cells, a fluorescent activatable cell-penetrating peptide (ACPP) was synthesized and functionally characterized. This 25-mer peptide was designed to be activatable by Matrix-Metallo-Proteases (MMPs). Its uptake selectivity was estimated using cells with different MMP activities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25075DOI Listing

Publication Analysis

Top Keywords

internalization near-infrared
8
near-infrared fluorescently
8
fluorescently labeled
8
activatable cell-penetrating
8
cell-penetrating peptide
8
labeled activatable
4
peptide proteins
4
proteins human
4
human fibrosarcoma
4
fibrosarcoma cell
4

Similar Publications

A Facile Approach To Develop Ion Pair Micelles Satellited Freshly Derived Neutrophils For Targeted Tumor Therapy.

Adv Healthc Mater

January 2025

Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.

View Article and Find Full Text PDF

Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.

View Article and Find Full Text PDF

Carrier-Free, Hyaluronic Acid-Modified Self-Assembled Doxorubicin, and Chlorin e6 Nanoparticles Enhance Combined Chemo- and Photodynamic Therapy in vivo.

Int J Nanomedicine

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.

Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!