Fluorescence-assisted carbohydrate electrophoresis (FACE) is a sensitive and simple method for the separation of oligosaccharides. It relies on labeling the reducing ends of oligosaccharides with a fluorophore, followed by PAGE. Concentration changes of oligosaccharides following hydrolysis of a carbohydrate polymer could be quantitatively measured continuously over time using the FACE method. Based on the quantitative analysis, we suggested that FACE was a relatively high-throughput, repeatable, and suitable method for the analysis of the action modes of cellulases. On account of the time courses of their hydrolytic profiles, the apparent processivity was used to show the different action modes of cellulases. Cellulases could be easily differentiated as exoglucanases, β-glucosidases, or endoglucanases. Moreover, endoglucanases from the same glycoside hydrolases family had a variety of apparent processivity, indicating the different modes of action. Endoglucanases with the same binding capacities and hydrolytic activities had similar oligosaccharide profiles, which aided in their classification. The hydrolytic profile of Trichoderma reesei Cel12A, an endoglucanases from T. reesei, contained glucose, cellobiose, and cellotriose, which revealed that it may have a new glucosidase activity, corresponding to that of EC 3.2.1.74. A hydrolysate study of a T. reesei Cel12A-N20A mutant demonstrated that the FACE method was sufficiently sensitive to detect the influence of a single-site mutation on enzymatic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201400563DOI Listing

Publication Analysis

Top Keywords

action modes
12
modes cellulases
12
hydrolytic profiles
8
fluorescence-assisted carbohydrate
8
carbohydrate electrophoresis
8
face method
8
apparent processivity
8
determination action
4
modes
4
cellulases
4

Similar Publications

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Introduction: An effective vaccination policy must be implemented to prevent foot-and-mouth disease (FMD). However, the currently used vaccines for FMD have several limitations, including induction of humoral rather than cellular immune responses.

Methods: To overcome these shortcomings, we assessed the efficacy of levamisole, a small-molecule immunomodulator, as an adjuvant for the FMD vaccine.

View Article and Find Full Text PDF

Exploring the Therapeutic Potential of 1,3-Thiazole: A Decade Overview.

Med Chem

January 2025

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna-431203, Maharashtra, India.

The escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule.

View Article and Find Full Text PDF

Dioxins and analogous derivatives pose significant concerns due to their impact on human health through both acute and prolonged exposures. They have the potential to resist natural degradation processes; therefore, they tend to accumulate in water, sediments, fish, meat, and human adipose tissue. As a result, concerns to both environmental and human health arise among the scientific community and environmental health organizers.

View Article and Find Full Text PDF

Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!