Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia.

Physiol Behav

Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C., Denmark.

Published: March 2015

Subchronic phencyclidine (subPCP) treatment induces schizophrenic-like behavior in rodents, including cognitive deficits and increased locomotor sensitivity towards acute administration of PCP. Evidence is accumulating that the gut microbiota (GM) influences behavior through modulation of the microbiota-gut-brain axis, and hence, part of the variation within this animal model may derive from variation in the GM. The aims of this study was to investigate first, the duration of subPCP-induced cognitive impairment in the novel object recognition test, and second, the possible effect of subchronic PCP-treatment on the GM, and the association between the GM and the behavioral parameters. The association was further investigated by antibiotic reduction of the GM. Male Lister Hooded rats were dosed twice daily i.p. with either 5mg/kg PCP or sterile isotonic saline for seven days followed by a seven-day washout period. Rats were tested in the novel object recognition and the locomotor activity assays immediately after, three weeks after, or six weeks after washout, and the fecal GM was analyzed by high throughput sequencing. Antibiotic- and control-treated rats were tested in the same manner following washout. In conclusion, subPCP-treatment impaired novel object recognition up to three weeks after washout, whereas locomotor sensitivity was increased for at least six weeks after washout. Differences in the core gut microbiome immediately after washout suggested subPCP treatment to alter the GM. GM profiles correlated to memory performance. Administration of ampicillin abolished the subPCP-induced memory deficit. It thus seems reasonable to speculate that the GM influences memory performance, contributing to variation within the model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2014.12.042DOI Listing

Publication Analysis

Top Keywords

novel object
16
object recognition
16
weeks washout
12
gut microbiota
8
animal model
8
subpcp treatment
8
locomotor sensitivity
8
rats tested
8
three weeks
8
memory performance
8

Similar Publications

Augmenting Circadian Biology Research With Data Science.

J Biol Rhythms

January 2025

Shiu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California.

The nature of biological research is changing, driven by the emergence of big data, and new computational models to parse out the information therein. Traditional methods remain the core of biological research but are increasingly either augmented or sometimes replaced by emerging data science tools. This presents a profound opportunity for those circadian researchers interested in incorporating big data and related analyses into their plans.

View Article and Find Full Text PDF

In this study, a novel precise reconstruction method was proposed for ghost imaging. In traditional ghost imaging (TGI), image quality deteriorates in proportion to the ℓ norm of the observed object. However, the proposed method reduces the effective ℓ norm by filtering an unknown direct current component and an arbitrary alternating current component derived from a pre-measured rough image.

View Article and Find Full Text PDF

Optical glass selection is an important research object in optical design, which is an important way to aberration correction. However, these methods to our knowledge either do not correct aberration well or consume too much time. To efficiently solve the apochromatic problems in optical design, this paper presents what we believe to be a novel automatic optimization method for discontinuous optical glass based on auto glass selection (AGS).

View Article and Find Full Text PDF

Quantitative phase imaging (QPI) has become a valuable tool in the field of biomedical research due to its ability to quantify refractive index variations of live cells and tissues. For example, three-dimensional differential phase contrast (3D DPC) imaging uses through-focus images captured under different illumination patterns deconvoluted with a computed 3D phase transfer function (PTF) to reconstruct the 3D refractive index. In conventional 3D DPC with semi-circular illumination, partially spatially coherent illumination often diminishes phase contrast, exacerbating inherent noise, and can lead to a large number of zero values in the 3D PTF, resulting in strong low-frequency artifacts and deteriorating imaging resolution.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!