The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surface plasmon polariton (SPP) dispersion relationship, and the complex reflection coefficients of the cavity boundaries. In small wavelength-scale cavities, the phase propagation due to reflections from the cavity walls is of a similar magnitude to propagation due to traversing the cavity. Until now, this reflection phase has been inferred from measurements of the resonant frequencies of a cavity of known dispersion and length. In this work, we present a method for measuring the complex reflection coefficients of a truncation in a 1D surface plasmon waveguide using electron energy loss spectroscopy in the scanning transmission electron microscope (STEM EELS) and show that this insight can be used to engineer custom cavities with engineered reflecting boundaries, whose resonant wavelengths and internal mode density profiles can be analytically predicted given knowledge of the cavity dimensions and complex reflection coefficients of the boundaries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl503179j | DOI Listing |
Sensors (Basel)
December 2024
LAPLACE Laboratory-UMR5213, National Polytechnic Institute of Toulouse, 31077 Toulouse, France.
This paper introduces a novel methodology for evaluating communication performance in rotating electric machines using Received Signal Strength Indication (RSSI) measurements coupled with artificial intelligence. The proposed approach focuses on assessing the quality of wireless signals in the complex, dynamic environment inside these machines, where factors like reflections, metallic surfaces, and rotational movements can significantly impact communication. RSSI is used as a key parameter to monitor real-time signal behavior, enabling a detailed analysis of communication reliability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Group of Quality Assurance and Industrial Image Processing, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany.
Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania.
Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained.
View Article and Find Full Text PDFPharmaceutics
November 2024
Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece.
Spray freeze drying (SFD) represents an emerging drying technique designed to produce a wide range of pharmaceuticals, foods, and active components with high quality and enhanced stability due to their unique structural characteristics. This method combines the advantages of the well-established techniques of freeze drying (FD) and spray drying (SD) while overcoming their challenges related to high process temperatures and durations. This is why SFD has experienced steady growth in recent years regarding not only the research interest, which is reflected by the increasing number of literature articles, but most importantly, the expanded market adoption, particularly in the pharmaceutical sector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!