Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1.

Biochim Biophys Acta

Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA. Electronic address:

Published: May 2015

Protective effects of prostacyclin (PC) or its stable analog beraprost against agonist-induced lung vascular inflammation have been associated with elevation of intracellular cAMP and Rac GTPase signaling which inhibited the RhoA GTPase-dependent pathway of endothelial barrier dysfunction. This study investigated a distinct mechanism of PC-stimulated lung vascular endothelial (EC) barrier recovery and resolution of LPS-induced inflammation mediated by small GTPase Rap1. Efficient barrier recovery was observed in LPS-challenged pulmonary EC after prostacyclin administration even after 15 h of initial inflammatory insult and was accompanied by the significant attenuation of p38 MAP kinase and NFκB signaling and decreased production of IL-8 and soluble ICAM1. These effects were reproduced in cells post-treated with 8CPT, a small molecule activator of Rap1-specific nucleotide exchange factor Epac. By contrast, pharmacologic Epac inhibitor, Rap1 knockdown, or knockdown of cell junction-associated Rap1 effector afadin attenuated EC recovery caused by PC or 8CPT post-treatment. The key role of Rap1 in lung barrier restoration was further confirmed in the murine model of LPS-induced acute lung injury. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation and live imaging of vascular leak over 6 days using a fluorescent tracer. The data showed significant acceleration of lung recovery by PC and 8CPT post-treatment, which was abrogated in Rap1a(-/-) mice. These results suggest that post-treatment with PC triggers the Epac/Rap1/afadin-dependent mechanism of endothelial barrier restoration and downregulation of p38MAPK and NFκB inflammatory cascades, altogether leading to accelerated lung recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372486PMC
http://dx.doi.org/10.1016/j.bbadis.2014.12.016DOI Listing

Publication Analysis

Top Keywords

endothelial barrier
16
lung injury
12
barrier recovery
12
lps-induced acute
8
lung
8
acute lung
8
lung vascular
8
8cpt post-treatment
8
barrier restoration
8
lung recovery
8

Similar Publications

Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.

J Nanobiotechnology

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics.

View Article and Find Full Text PDF

Cadmium-induced iron dysregulation contributes to functional impairment in brain endothelial cells via the ferroptosis pathway.

Toxicol Appl Pharmacol

January 2025

College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea. Electronic address:

Cadmium (Cd) is a heavy metal that is a major hazardous environmental contaminant, ubiquitously present in the environment. Cd exposure has been closely associated with an increased prevalence and severity of neurological and cardiovascular diseases (CVD). The blood-brain barrier (BBB) plays a crucial role in protecting the brain from external environmental factors.

View Article and Find Full Text PDF

Compromised vascular integrity facilitates the cancer cells extravasation and metastasis. However, the mechanisms leading to a disruption in vascular integrity in colorectal cancer (CRC) remain unclear. In this study, PCDH17 expression was higher in the vascular endothelial cells of colon cancer with distant metastasis, and the rates of PCDH17 endothelial cells (ECs) was associated with the M stage in clinical pathological characteristics analysis and correlated with a poor survival prognosis.

View Article and Find Full Text PDF

Leveraging computational modeling to explore epithelial and endothelial cell monolayer mechanobiology.

Trends Cell Biol

January 2025

Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany. Electronic address:

Endothelial cells (ENCs) and epithelial cells (EPCs) form monolayers whose barrier function is critical for the maintenance of physiological processes and extremely sensitive to mechanical cues. Computational models have emerged as powerful tools to elucidate how mechanical cues impact the behavior of these monolayers in health and disease. Herein, the importance of mechanics in regulating ENC and EPC monolayer behavior is established, highlighting similarities and differences in various biological contexts.

View Article and Find Full Text PDF

Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Cell Mol Biol Lett

January 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects And Methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!