There are conflicting opinions on the relative importance of photosynthetic limitations under salinity. Quantitative limitation analysis of photosynthesis provides insight into the contributions of different photosynthetic limitations, but it has only been applied under saturating light conditions. Using experimental data and modelling approaches, we examined the influence of light intensity on photosynthetic limitations and quantified the osmotic and ionic effects of salinity on stomatal (LS ), mesophyll (LM ), biochemical (LB ) and light (LL ) limitations in cucumber (Cucumis sativus L.) under different light intensities. Non-linear dependencies of LS , LM and LL to light intensity were found. Osmotic effects on LS and LM increased with the salt concentration in the nutrient solution (Ss ) and the magnitude of LM depended on light intensity. LS increased with the Na(+) concentration in the leaf water (Sl ) and its magnitude depended on Ss . Biochemical capacity declined linearly with Sl but, surprisingly, the relationship between LB and Sl was influenced by Ss . Our results suggest that (1) improvement of stomatal regulation under ionic stress would be the most effective way to alleviate salinity stress in cucumber and (2) osmotic stress may alleviate the ionic effects on LB but aggravate the ionic effects on LS .

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12504DOI Listing

Publication Analysis

Top Keywords

ionic effects
16
photosynthetic limitations
12
light intensity
12
osmotic ionic
8
effects salinity
8
salinity stomatal
8
stomatal mesophyll
8
mesophyll biochemical
8
biochemical light
8
light limitations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!