Identification and optimization of Escherichia coli GlmU inhibitors: an in silico approach with validation thereof.

Eur J Med Chem

Discovery Informatics, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India. Electronic address:

Published: March 2015

Bacterial infections are causing havoc on the populace. Continuous rising of antibiotic resistance in bacteria causes pressing requirement of new drugs and drug therapies that are effective against these multidrug resistance bacteria. GlmU, which is a bifunctional acetyltransferase/uridyltransferase enzyme, is novel target to treat bacterial infections. An effort has been made to identify and develop novel inhibitors of acetyltransferase activity of Escherichia coli (Ec) GlmU protein. In silico approach has been applied to screen chemical library of 50,000 drug-like compounds procured from ChemBridge and ChemDiv databases. This chemical library was screened by using a combination of ligand guided and structure guided techniques. In vitro evaluation of the in silico identified hits helped in the discovery of 8 promising inhibitors of acetyltransferase activity of Ec GlmU. Structure guided lead optimization strategy was adopted based on the acetyltransferase binding site analysis, that presented the scope of modification around three different structural moieties identified through in vitro hits. In addition, molecular dynamics studies revealed the stability of the protein-inhibitor complexes of the two most promising inhibitors identified in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2014.12.030DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli glmu
8
silico approach
8
bacterial infections
8
resistance bacteria
8
inhibitors acetyltransferase
8
acetyltransferase activity
8
chemical library
8
structure guided
8
promising inhibitors
8

Similar Publications

Epidemiological and molecular characteristics of extraintestinal pathogenic escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019.

BMC Vet Res

January 2025

State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.

Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy.

View Article and Find Full Text PDF

Background: Liver transplantation (LT) is a critical intervention for individuals with end-stage liver disease; yet, post-transplant problems, especially infections, graft rejection, and chronic liver disease, are often linked to systemic inflammation. Cytokines, small signaling molecules, significantly influence immune responses during and post-liver transplantation. Nonetheless, the intricate relationships among cytokines, immune responses, and the gut microbiota, especially gut dysbiosis, are still inadequately comprehended.

View Article and Find Full Text PDF

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!