A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases. | LitMetric

AI Article Synopsis

  • Human serum albumin (HSA) experiences structural changes in pro-oxidant and pro-inflammatory conditions, like those found in liver cirrhosis, including the formation of albumin dimers.
  • A study used mass spectrometry techniques to identify and characterize these HSA dimers, revealing that they can form through disulfide bridges at a specific site (Cys-34) and can exist as both homo- and hetero-dimers.
  • In patients with liver cirrhosis, the ratio of HSA dimers to monomers was significantly higher compared to healthy individuals, suggesting that these dimeric forms could serve as potential biomarkers for liver disease.

Article Abstract

Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2014.12.001DOI Listing

Publication Analysis

Top Keywords

hsa
9
human serum
8
serum albumin
8
liver cirrhosis
8
hsa dimers
8
mass spectrometry
8
native hsa
8
mass spectrometric
4
spectrometric characterization
4
characterization human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!