Glycoengineering has been successfully used to improve the physicochemical and pharmaceutical properties of therapeutics. One aspect of glycoengineering is to introduce new N-linked glycosylation consensus sequences (Asn, X, Thr/Ser) into desirable positions in the peptide backbone by mutational insertion to generate proteins with increased sialic acid content. In the current work, human interferon beta (huIFN-β) was used as a model to identify the potential positions for the addition of new N-glycosylation sites. A computational strategy was employed to predict the structural distortions and functional alterations that might be caused by the change in amino acid sequence. Accordingly, three-dimensional (3D) structures of the designed huIFN-β analogs were generated by comparative modeling. Molecular dynamics (MD) simulation was carried out to assess the molecular stability and flexibility profile of the structures. Subsequently, for the purpose of glycoengineering huIFN-β, analogs with 3D structures more similar to the wild-type huIFN-β and exposed Asn residue in the new N-glycosylation site were identified. These modeling procedures indicated that the addition of the new N-glycosylation site in the loop regions had lower constraining effects on the tertiary structure of the protein. This computational strategy can be applied to avoid alterations in the 3D structure of proteins caused by changes in the amino acid sequences, when designing novel hyper-glycosylated therapeutics. This in turn reduces labor-intensive experimental analyses of each analog.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2014.12.001 | DOI Listing |
Clin J Gastroenterol
December 2024
Department of Diagnostic Pathology, National Hospital Organization Shizuoka Medical Center, 762-1 Nagasawa, Shimizu, Sunto District, Shizuoka, 411-0904, Japan.
Surgical resection is the only curative treatment for cholangiocarcinoma, but it is often diagnosed at advanced stages, making surgical resection infeasible. Recently, the concept of conversion surgery has expanded the indications for surgical treatment, thanks to advancements in both perioperative management and chemotherapy. However, it remains unclear which patients benefit most from this treatment strategy.
View Article and Find Full Text PDFImmunol Rev
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.
View Article and Find Full Text PDFBMC Genomics
December 2024
School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China.
Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this.
View Article and Find Full Text PDFNat Microbiol
December 2024
Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.
Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields.
View Article and Find Full Text PDFSci Rep
December 2024
College of Sciences, National University of Defense Technology, 410073, Changsha, China.
Deep Convolutional Neural Networks (DCNNs), due to their high computational and memory requirements, face significant challenges in deployment on resource-constrained devices. Network Pruning, an essential model compression technique, contributes to enabling the efficient deployment of DCNNs on such devices. Compared to traditional rule-based pruning methods, Reinforcement Learning(RL)-based automatic pruning often yields more effective pruning strategies through its ability to learn and adapt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!