In the present study, we sought to elucidate the effect of miR‑145 on glioma cell progression and its mechanisms of action. We examined the effects of miR‑145 on proliferation and invasion of U87 glioma cells and on capillary tube formation. Our data show that restoration of miR‑145 in U87 glioma cells significantly reduced their in vitro proliferation, invasion and angiogenesis. However, decreased miR‑145 expression promoted U87 glioma cell proliferation, invasion and angiogenesis, and reduced-expression of miR‑145 increased ADAM17 and EGFR expression in U87 cells. Overexpression of miR‑145 reduced ADAM17 and EGFR expression. VEGF secretion and VEGF expression were decreased by increased miR‑145 expression in U87 cells and were reversed by miR‑145 downregulation in vitro. Nude mice with intracerebral implantation of U87 overexpressing miR‑145 cells exhibited significantly reduced tumor growth and promoted survival compared with control groups. Taken together, these results suggest a role for miR‑145 as a tumor suppressor which inhibits glioma cell proliferation, invasion and angiogenesis in vitro and reduces glioma growth in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324582 | PMC |
http://dx.doi.org/10.3892/ijo.2014.2807 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4 T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12.
View Article and Find Full Text PDFNat Prod Res
January 2025
School of Pharmacy, Jiangxi Provincial Education Department Key Laboratory for the Application of Key Technologies in Drug Screening for Inflammatory Diseases and Phlegm Syndrome, Nanchang Medical College, Nanchang, China.
Two new abietane diterpenoids ( and ) and two known analogs ( and ) were isolated from the whole plants of . Their structures were determined by comprehensive spectroscopic methods (UV, IR, NMR, and HRESIMS). Moreover, all compounds were evaluated for their cytotoxic activities against U251 glioblastoma cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China.
Background And Purpose: The characteristics and role of NOD-like receptor (NLR) signaling pathway in high-grade gliomas were still unclear. This study aimed to reveal the association of NLR with clinical heterogeneity of glioblastoma (GBM) patients, and to explore the role of NLR pathway hub genes in the occurrence and development of GBM.
Methods: Transcriptomic data from 496 GBM patients with complete prognostic information were obtained from the TCGA, GEO, and CGGA databases.
Radiat Oncol
January 2025
Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.
Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!