Purpose: Cks1, a conformationally heterogenous 9 kDa protein, is markedly overexpressed in cancer cells and contributes to tumor development. Cks1 is an essential component of the SCF-Skp2 ubiquitin ligase complex that targets the Cdk inhibitors p27(Kip1) and p21(Cip1). Cks1 is known to interact with the Hsp90-Cdc37 chaperone machinery, although whether this facilitates its conformational maturation and stability is not known. To test whether abrogating the chaperone function of Hsp90 could destabilize Cks1, we examined the effects of treating different cancer cell lines with the benzoquinone ansamycin 17-allylamino geldanamycin (17-AAG), a compound that selectively binds Hsp90 and potently inhibits its ATP-dependent chaperone activity.

Methods: The effect of Hsp90 inhibition using 17-AAG on Cks1 protein and associated cell cycle proteins including Skp2, p27(Kip1), p21(Cip1), and Cdk1 in cancer cells was determined by Western blotting. Ubiquitination analysis was carried out by transfecting cells with an HA-ubiquitin plasmid and specifically immunoprecipitating Cks1 to examine polyubiquitinated species. Flow cytometry was utilized to examine the effects of Hsp90 inhibition on cell cycle profiles.

Results: Here, we demonstrate for the first time that inhibition of Hsp90 utilizing 17-AAG destabilizes Cks1 in cancer cells by promoting its ubiquitination and proteasomal degradation. 17-AAG-induced Cks1 depletion was accompanied by concomitant decreases in Skp2 and Cdk1. 17-AAG treatment also induced G2/M accumulation in MCF-7 breast carcinoma cells, and G1 accumulation in the colon carcinoma lines HCT116 and SW620.

Conclusions: We conclude that perturbing the Hsp90 pathway could provide a useful therapeutic strategy in tumors driven by Cks1 overexpression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-014-2666-7DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
cks1
10
proteasomal degradation
8
p27kip1 p21cip1
8
hsp90 inhibition
8
cell cycle
8
cells
6
hsp90
6
cancer
5
cks1 proteasomal
4

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!