Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endostar, a recombinant human endostatin, is recognized as one of the most effective angiogenesis inhibitors. The angiogenesis inhibitory effects of Endostar suggest a possible beneficial role of Endostar in choroidal neovascularization (CNV), which is predominantly induced by hypoxia. In our previous study, it was reported that Endostar may inhibit the proliferation and migration of RF/6A choroid‑retinal endothelial cells. However, the inhibitory effect of Endostar on hypoxia‑induced cell proliferation and migration in RF/6A cells has not yet been elucidated. Therefore, the present study investigated the effect of Endostar on hypoxia‑induced cell proliferation and migration in RF/6A cells and the possible mechanisms underlying this effect. Under chemical hypoxia conditions, cell viability was increased to 114.9±10.1 and 123.6±9.6% in cells treated with 100 and 200 µm CoCl2, respectively, compared with the control (P<0.01). Pretreatment with 10‑100 µg/ml Endostar significantly inhibited CoCl2‑induced cell proliferation (P<0.05), and pre‑treatment with 10 µg/ml Endostar for 24, 48 and 96 h attenuated CoCl2‑promoted cell migration by 60.5, 48.3 and 39.6%, respectively, compared with the control (P<0.001). In addition, pretreatment with 10 µg/ml Endostar reversed the cell cycle arrest at S phase and the increased expression of hypoxia‑inducible factor‑1α (HIF‑1α) and vascular endothelial growth factor (VEGF) mRNA in RF/6A cells treated with 200 µM CoCl2. These data indicate that Endostar inhibited CoCl2‑induced hypoxic proliferation and migration, and limited cell cycle progression in vitro possibly through the HIF‑1α/VEGF pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2014.3131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!