GABAA receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain. Restoration of diminished spinal GABAA-α2 and -α3 subunit-containing receptor function is a principal contributor to this analgesia, albeit involvement of GABAA-α5-receptors has not been excluded. Thus, we compared NS11394 and TPA023 (PAMs with selectivity/efficacy at GABAA-α2/α3/α5 receptors) with TP003 (a reportedly GABAA-α3 selective PAM) against spinal sensitization. However, in-house electrophysiology studies designed to confirm the selectivity of TPA023 and TP003 for human GABAA receptors did not corroborate published data, with TP003 displaying considerable GABAA-α5 receptor efficacy. Therefore, we identified a novel PAM, NS16085, which possesses negligible efficacy at GABAA-α5 receptors, but with GABAA-α2/α3 efficacy equivalent to NS11394. At the GABAA-α1 receptor the compound gives low level of negative modulation further separating it from the other compounds. Rat pups with carrageenan-induced hindpaw inflammatory hyperalgesia were used to make ex vivo spinal dorsal root-evoked ventral root recordings. Some spontaneous activity and large numbers of spikes to repetitive stimulation of dorsal roots at C-fibre intensity, indicative of wind-up and sensitization were observed. Equimolar concentrations of NS11394, TP003 and NS16085 all attenuated wind-up to a similar degree; TPA023 was clearly less effective. In adult rats, NS16085 (3-30 mg/kg, p.o.) dose-dependently reduced formalin-induced hindpaw flinching with efficacy comparable to NS11394. Thus, potentiation of GABAA-α2 and-α3 receptors is sufficient to depress spinal sensitization and mediate analgesia after inflammatory injury. Positive modulation at GABAA-α5-receptors is apparently dispensable for this process, an important consideration given the role of this receptor subtype in cognitive function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.12.010DOI Listing

Publication Analysis

Top Keywords

spinal sensitization
12
gabaa receptor
8
receptor
6
receptors
5
spinal
5
gabaa
4
gabaa α5
4
α5 subunit-containing
4
subunit-containing receptors
4
receptors contribute
4

Similar Publications

Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.

View Article and Find Full Text PDF

Capsaicin-induced secondary hyperalgesia differences between the trigeminal and spinal innervation.

Sci Rep

January 2025

Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil.

This study compared the degree of secondary hyperalgesia and somatosensory threshold changes induced by topical capsaicin between spinal and trigeminal innervation. This crossover clinical trial included 40 healthy individuals in which 0.25 g of 1% capsaicin cream was randomly applied for 45 minutes to a circular area of 2 cm to the skin covering the masseter muscle and forearm in 2 different sessions, separated by at least 24 hours and no more than 72 hours (washout period).

View Article and Find Full Text PDF

The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain.

View Article and Find Full Text PDF

Mechanisms underlying modulation of human GlyRα3 by Zn and pH.

Sci Adv

December 2024

Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA.

Glycine receptors (GlyRs) regulate motor control and pain processing in the central nervous system through inhibitory synaptic signaling. The subtype GlyRα3 expressed in nociceptive sensory neurons of the spinal dorsal horn is a key regulator of physiological pain perception. Disruption of spinal glycinergic inhibition is associated with chronic inflammatory pain states, making GlyRα3 an attractive target for pain treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!