Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying.

Int J Pharm

College of Engineering, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA. Electronic address:

Published: February 2015

Targeted pulmonary delivery facilitates the direct application of bioactive materials to the lungs in a controlled manner and provides an exciting platform for targeting magnetic nanoparticles (MNPs) to the lungs. Iron oxide MNPs remotely heat in the presence of an alternating magnetic field (AMF) providing unique opportunities for therapeutic applications such as hyperthermia. In this study, spray drying was used to formulate magnetic nanocomposite microparticles (MnMs) consisting of iron oxide MNPs and d-mannitol. The physicochemical properties of these MnMs were evaluated and the in vitro aerosol dispersion performance of the dry powders was measured by the Next Generation Impactor(®). For all powders, the mass median aerosol diameter (MMAD) was <5μm and deposition patterns revealed that MnMs could deposit throughout the lungs. Heating studies with a custom AMF showed that MNPs retain excellent thermal properties after spray drying into composite dry powders, with specific absorption ratios (SAR)>200W/g, and in vitro studies on a human lung cell line indicated moderate cytotoxicity of these materials. These inhalable composites present a class of materials with many potential applications and pose a promising approach for thermal treatment of the lungs through targeted pulmonary administration of MNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818718PMC
http://dx.doi.org/10.1016/j.ijpharm.2014.12.050DOI Listing

Publication Analysis

Top Keywords

targeted pulmonary
12
magnetic nanocomposite
8
nanocomposite microparticles
8
microparticles mnms
8
pulmonary delivery
8
spray drying
8
iron oxide
8
oxide mnps
8
formulation characterization
4
characterization inhalable
4

Similar Publications

Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates.

View Article and Find Full Text PDF

MicroRNA abundance as a particular biomarker for precisely identifying cancer metastases has emerged in recent years. The expression levels of miRNA are analyzed to get insights into cancer tissue detection and subtypes. Similar to other cancer types, the miRNA shows high levels of target mRNA dysregulation in association with non-small cell lung carcinoma (NSCLC).

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Acute lung injury i.e. ALI and its serious form acute respiratory distress syndrome (ARDS) are incurable medical conditions associated with significant global mortality and morbidity.

View Article and Find Full Text PDF

Purpose Of Review: The present review aims to address systemic sclerosis (SSc)-associated myocardial disease, a significant cause of morbidity and mortality, by examining the mechanisms of inflammation, microvascular dysfunction, and fibrosis that drive cardiac involvement. The objective is to elucidate critical risk factors and explore advanced diagnostic tools for early detection, enhancing patient outcomes by identifying those at highest risk.

Recent Findings: Recent studies underscore the importance of specific autoantibody profiles, disease duration, and cardiovascular comorbidities as key risk factors for severe cardiac manifestations in SSc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!