MicroRNA-451 plays a role in murine embryo implantation through targeting Ankrd46, as implicated by a microarray-based analysis.

Fertil Steril

Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.

Published: March 2015

Objective: To determine the potential microRNA (miRNA) regulators of embryo implantation, as a continuation of genomic and proteomic research.

Design: Laboratory animal research.

Setting: University hospital laboratory.

Animal(s): Adult healthy female C57BL6/J mice (age 6-8 weeks, nonfertile, weighing 18-20 g each).

Intervention(s): Female mice were mated naturally with fertile males to produce pregnancy. Luminal epithelium was collected by laser-capture microdissection during the implantation period. Mouse models of pseudopregnancy, delayed implantation, and artificial decidualization were established.

Main Outcome Measure(s): The miRNA profile in luminal epithelium was clarified by microarray analysis and validated by real-time reverse transcription polymerase chain reaction (qRT-PCR) in a series of models. Target genes were predicted and confirmed by luciferase activity assay. The role of miRNA in implantation was examined by loss-of-function and gain-of-function of miRNA in vitro and in vivo.

Result(s): A total of 29 and 15 miRNAs were up- and down-regulated, respectively, during the implantation period; 11 of these miRNAs were validated by qRT-PCR. The profile of miR-451 was clarified in a series of models. A dual-luciferase activity assay showed that Ankrd46 was a target gene of miR-451. Loss-of-function by LV-miR-451 sponge or miR-451 inhibitor led to a reduced number of embryo implantations, but had little effect on fertilization.

Conclusion(s): miR-451 was specifically up-regulated during the implantation period, and it may play a major role in embryo implantation by targeting Ankrd46.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2014.11.024DOI Listing

Publication Analysis

Top Keywords

embryo implantation
12
implantation period
12
implantation
8
implantation targeting
8
targeting ankrd46
8
luminal epithelium
8
series models
8
activity assay
8
microrna-451 plays
4
plays role
4

Similar Publications

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.

Methods: The study involved 45 women with a mean age of 35 ± 4.

View Article and Find Full Text PDF

: Autologous platelet-rich plasma (PRP) transfusions are a relatively new treatment method used in different fields of medicine, including the field of reproductive medicine. One of the applications of these concentrated platelet infusions is the treatment of endometrial receptivity, which is a key factor for embryo implantation. There are implications that PRP infusions can lead to increased endometrial thickness, endometrial receptivity, and significantly elevated clinical pregnancy rates.

View Article and Find Full Text PDF

Endometrial Receptivity-Lessons from "Omics".

Biomolecules

January 2025

Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, VIC 3052, Australia.

The window of implantation (WOI) is a critical phase of the menstrual cycle during which the endometrial lining becomes receptive and facilitates embryo implantation. Drawing on findings from various branches of "omics", including genomics, epigenomics, transcriptomics, proteomics, lipidomics, metabolomics, and microbiomics, this narrative review aims to (1) discuss mechanistic insights on endometrial receptivity and its implication in infertility; (2) highlight advances in investigations for endometrial receptivity; and (3) discuss novel diagnostic and therapeutic strategies that may improve reproductive outcomes.

View Article and Find Full Text PDF

Blastocyst-Derived Lactate as a Key Facilitator of Implantation.

Biomolecules

January 2025

Melbourne IVF, East Melbourne, VIC 3002, Australia.

The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!