Oxidative stress plays a role in the development of physical dependence induced by morphine. Bergenin, a polyphenol found in many Asian, African, and South American medicinal plants, is a potent antinarcotic agent with wide spectrum of pharmacological activities including antioxidant action. In the present study, we observed that bergenin decreased the development of physical dependence induced by morphine in mice and the antioxidant activity of bergenin plays a role in the antinarcotic effects through adapting to morphine-induced oxidative stress in the brain. The naloxone-precipitated withdrawal symptom (jumping frequency) was significantly ameliorated (50% of control group) by administration of bergenin (20 mg/kg) in morphine-treated mice. Furthermore, morphine-induced down-regulation of glutathione (GSH) contents was reversed by bergenin administration in the frontal cortex and liver. Bergenin had no effects on the increased levels of nfr2-dependent antioxidant enzyme HO1 and NQO1 in the frontal cortex, striatum, and liver of morphine-treated mice. However, the morphine-induced increase in nrf2 nuclear translocation in the frontal cortex and striatum was inhibited by bergenin treatment. These results suggest that bergenin has a potential antinarcotic effect via regulation of GSH contents and oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-014-0534-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!