Biphasic, lyotropic, active nematics.

Phys Rev Lett

The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom.

Published: December 2014

We perform dynamical simulations of a two-dimensional active nematic fluid in coexistence with an isotropic fluid. Drops of active nematic become elongated, and an effective anchoring develops at the nematic-isotropic interface. The activity also causes an undulatory instability of the interface. This results in defects of positive topological charge being ejected into the nematic, leaving the interface with a diffuse negative charge. Quenching the active lyotropic fluid results in a steady state in which phase-separating domains are elongated and then torn apart by active stirring.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.248303DOI Listing

Publication Analysis

Top Keywords

active nematic
8
active
5
biphasic lyotropic
4
lyotropic active
4
active nematics
4
nematics perform
4
perform dynamical
4
dynamical simulations
4
simulations two-dimensional
4
two-dimensional active
4

Similar Publications

Integer Topological Defects Reveal Antisymmetric Forces in Active Nematics.

Phys Rev Lett

December 2024

Shanghai Jiao Tong University, School of Physics and Astronomy, Institute of Natural Sciences, Shanghai 200240, China.

Article Synopsis
  • Researchers categorize cell layers as either contractile or extensile active nematics, but recent experiments with neural progenitor cells and +1 topological defects challenge this classification.
  • The study involves a particle-level model and a continuum theory, both of which reveal that cells accumulate at the core of +1 defects, aligning with the main experimental outcome.
  • The cell accumulation is driven by two overlooked antisymmetric active forces, and the findings have implications for understanding other active nematics experiments and existing theories.
View Article and Find Full Text PDF

The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro.

View Article and Find Full Text PDF

Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood.

View Article and Find Full Text PDF

The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.

View Article and Find Full Text PDF

Phosphorescent Liquid Crystalline Polymer-based Circularly Polarized Luminescence Optical Waveguides for Enhanced Photonic Signal Processing and Information Encryption.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China.

Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!