We perform dynamical simulations of a two-dimensional active nematic fluid in coexistence with an isotropic fluid. Drops of active nematic become elongated, and an effective anchoring develops at the nematic-isotropic interface. The activity also causes an undulatory instability of the interface. This results in defects of positive topological charge being ejected into the nematic, leaving the interface with a diffuse negative charge. Quenching the active lyotropic fluid results in a steady state in which phase-separating domains are elongated and then torn apart by active stirring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.248303 | DOI Listing |
Phys Rev Lett
December 2024
Shanghai Jiao Tong University, School of Physics and Astronomy, Institute of Natural Sciences, Shanghai 200240, China.
Adv Sci (Weinh)
January 2025
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro.
View Article and Find Full Text PDFNat Commun
January 2025
Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA.
Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood.
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, and College of Chemistry, Xiangtan University, Xiangtan, 411105, P.R. China.
Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!