We have studied the superconducting Si(111)-(√7×√3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.247004DOI Listing

Publication Analysis

Top Keywords

josephson vortices
8
scanning tunneling
8
tunneling microscope
8
imaging josephson
4
vortices surface
4
surface superconductor
4
superconductor si111-√7×√3-in
4
si111-√7×√3-in scanning
4
microscope studied
4
studied superconducting
4

Similar Publications

Bose Metals, from Prediction to Realization.

Materials (Basel)

October 2024

SwissScientific Technologies SA, Rue du Rhone 59, CH-1204 Geneva, Switzerland.

Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid 1990s, showing that they arise due to topological quantum effects. The observation of Bose metals in perfectly regular Josephson junction arrays fully confirms our prediction and rules out alternative models based on disorder.

View Article and Find Full Text PDF

Interplay of Cooper Pairs and Zero-Energy Quasiparticles in a Gapless Superconductor.

Adv Mater

August 2024

Center for Artificial Low-Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.

The interplay between Cooper pairs and Bogoliubov-de Gennes (BdG) quasiparticles is a topic of considerable interest in the quantum properties of solids, but its important ingredient, the sufficient amount of low-energy quasiparticles to interact with Cooper pairs remains elusive in conventional superconductors. Here a gapless superconductor with coupled paramagnetic atomic layers is used to generate a significant amount of zero-energy quasiparticles that Anderson-localize and bifurcate into regions of high and low zero-energy quasiparticle density of states. The enriched zero-energy quasiparticles induce puddled superconductivity and Josephson vortices.

View Article and Find Full Text PDF

The utilization of Josephson vortices as information carriers in superconducting digital electronics is hindered by the lack of reliable displacement and localization mechanisms. In this Letter, we experimentally investigate planar Nb junctions with an intrinsic phase shift and nonreciprocity induced by trapped Abrikosov vortices. We demonstrate that the entrance of a single Josephson vortex into such junctions triggers the switching between metastable ±π semifluxon states.

View Article and Find Full Text PDF

A new class of superfluids and superconductors with spatially periodic modulation of the superfluid density is arising. It might be related to the supersolid phase of matter, in which the spontaneous breaking of gauge and translational symmetries leads to a spatially modulated macroscopic wavefunction. This relation was recognized only in some cases and there is the need for a universal property quantifying the differences between supersolids and ordinary matter, such as the superfluid fraction, which measures the reduction in superfluid stiffness resulting from the spatial modulation.

View Article and Find Full Text PDF

High-temperature Josephson diode.

Nat Mater

May 2024

Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India.

Many superconducting systems with broken time-reversal and inversion symmetry show a superconducting diode effect, a non-reciprocal phenomenon analogous to semiconducting p-n-junction diodes. While the superconducting diode effect lays the foundation for realizing ultralow dissipative circuits, Josephson-phenomena-based diode effect (JDE) can enable the realization of protected qubits. The superconducting diode effect and JDE reported thus far are at low temperatures (~4 K), limiting their applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!