Field-reversed bubble in deep plasma channels for high-quality electron acceleration.

Phys Rev Lett

Lobachevsky National Research University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia and Institute of Applied Physics RAS, Nizhny Novgorod 603950, Russia.

Published: December 2014

We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for monoenergetic acceleration. We observe as low as 10⁻³ rms relative witness beam energy uncertainty in each cross section and 0.3% total energy spread. By varying the plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultrashort pancakelike laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.245003DOI Listing

Publication Analysis

Top Keywords

plasma channels
8
electron acceleration
8
deep channel
8
field-reversed bubble
4
bubble deep
4
plasma
4
deep plasma
4
channels high-quality
4
high-quality electron
4
acceleration study
4

Similar Publications

Annexins are a family of multifunctional calcium-dependent and phospholipid-binding proteins that are widely distributed in the plant kingdom. They have a highly conserved evolutionary history that dates back to single-celled protists. Plant annexins, as soluble proteins, can flexibly bind to endomembranes and plasma membranes, exhibiting unique calcium-dependent and calcium-independent characteristics.

View Article and Find Full Text PDF

Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.

View Article and Find Full Text PDF

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

Polymer-Free and Dry Patterning of Wafer-Scale Two-Dimensional Semiconductors via van der Waals Delamination.

Nano Lett

January 2025

Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China.

Two-dimensional (2D) semiconductors have attracted a considerable amount of interest as channel materials for future transistors. Patterning of 2D semiconductors is crucial for separating continuous monolayers into independent units. However, the state-of-the-art 2D patterning process is largely based on photolithography and high-energy plasma/RIE etching, leading to unavoidable residues and degraded device uniformity, which remains a critical challenge for the practical application of 2D electronics.

View Article and Find Full Text PDF

For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!