We show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.240404 | DOI Listing |
Nat Commun
December 2024
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Centre for NEMS and Nanophotonics (CNNP), Indian Institute of Technology Madras, Chennai, 600036, India.
Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
In this study, we investigate the application of support vector machines utilizing a radial basis function kernel for predicting nuclear α-decay half-lives. Our approach integrates a comprehensive set of physics-derived features, including characteristics derived from nuclear structure, to systematically evaluate their impact on predictive accuracy. In addition to traditional parameters such as proton and neutron numbers, as well as terms based on the liquid drop model (e.
View Article and Find Full Text PDFSci Rep
December 2024
School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Given the higher fall risk and the fatal sequelae of falls on stairs, it is worthwhile to investigate the mechanism of dynamic balance control in individuals with knee osteoarthritis during stair negotiation. Whole-body angular momentum ([Formula: see text]) is widely used as a surrogate to reflect dynamic balance and failure to constrain [Formula: see text] may increase the fall risk. This study aimed to compare the range of [Formula: see text] between people with and without knee osteoarthritis during stair ascent and descent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!