A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Four dimensional digital tomosynthesis using on-board imager for the verification of respiratory motion. | LitMetric

AI Article Synopsis

  • The study aimed to evaluate respiratory movement in patients using four-dimensional digital tomosynthesis (4D DTS) as a potential localization tool for targeting organs affected by respiratory motion.
  • Four patients with lung and liver cancer were analyzed, using on-board imaging to capture respiratory signals and reconstruct 4D DTS images, revealing diaphragm motion across different respiratory phases.
  • The results showed 4D DTS provided clearer visualization of respiratory movement, with reduced image distortion from metal artifacts compared to traditional 4D CBCT, suggesting it could be a viable option for real-time monitoring in radiotherapy.

Article Abstract

Purpose: To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS), extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement.

Methods And Materials: Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650-670 projections) was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal "half-fan" 4D DTS, and 90° and 270° for sagittal "half-fan" 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution.

Results: The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results.

Conclusion: We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277366PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115795PLOS

Publication Analysis

Top Keywords

respiratory motion
16
projection data
12
dts
9
digital tomosynthesis
8
on-board imager
8
motion diaphragm
8
mid-exhale phase
8
"half-fan" dts
8
respiratory
6
motion
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!