Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A combination of mapping the mutation with a high-density SNP panel and a candidate gene approach has identified a mutation in collagen type II, alpha I (Col2a1). Col2a1 has previously been studied in the mouse and our mutant phenotype closely resembles mutations made in the Col2a1 locus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277458 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116104 | PLOS |
Taiwan J Obstet Gynecol
January 2025
Genetics Lab of Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China. Electronic address:
Objective: This is a case report of a COL4A1 gene mutation which was confirmed by further genetic testing following anomalies observed in prenatal ultrasound and fetal brain magnetic resonance imaging (MRI).
Case Reports: The ultrasound examination of the patient revealed a mass in fetal left intracranial cavity. Repeated subsequent MRI detected an evolving mass in the left frontal parietal lobe.
Pathol Res Pract
January 2025
Department of Electric and Electronic Engineering, Dr. M.G.R Educational and Research Institute, Deemed to Be University, Chennai, Tamil Nadu 600 095, India.
Cancers are a class of disorders that entail uncontrollably unwanted cell development with dissemination. One in six fatalities globally is attributed to cancer, a global health issue. The analysis of the entire DNA sequence and how it expresses itself in tumor cells is known as cancer genomics.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA.
After reporting the first known clinical case associating compound heterozygous single-nucleotide variants in Exon 2 of to aortic aneurysmal and iliac dissection, we began prospective surveillance in our vascular genetic practice for similar cases. Herein, we present nine (9) subjects from a total cohort of 135 with arterial aneurysms or dissections who revealed single-nucleotide variants in with no other alterations in a panel of 35 genes associated with aneurysmal and dissection disorders. Five out of nine (5/9) single-nucleotide variants were in Exon 1, and four out of nine (4/9) mutations were in Exon 2, both of which are principal coding exons for this gene.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia.
Bruck syndrome is a rare autosomal recessive disorder characterized by increased bone fragility and joint contractures similar to those in arthrogryposis and is known to be associated with mutations in the () and () genes. These genes encode endoplasmic reticulum proteins that play an important role in the biosynthesis of type I collagen, which in turn affects the structure and strength of connective tissues and bones in the body. Mutations are associated with disturbances in both the primary collagen chain and its post-translational formation, but the mechanism by which mutations lead to Bruck syndrome phenotypes has not been determined, not only because of the small number of patients who come to the attention of researchers but also because of the lack of disease models.
View Article and Find Full Text PDFCells
December 2024
Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia.
Osteoporosis is characterized by increased resorption and decreased bone formation; it is predominantly influenced by genetic factors. G-protein coupled receptors (GPCRs) play a vital role in bone homeostasis, and mutations in these genes are associated with osteoporosis. This study aimed to investigate the impact of single nucleotide polymorphism (SNP) rs1042713 in the gene, encoding the beta-2-adrenergic receptor, on osteoblastogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!