Azole resistance of Aspergillus fumigatus isolates has been reported worldwide and it would appear to be mainly due to a point mutation in the 14α-sterol demethylase (CYP51A) gene, which is the target enzyme for azoles. The mutation has been confirmed in isolates from patients who received long-term itraconazole (ITZ) therapy and from agricultural fields where high levels of azole fungicides were employed. However, the relationship between farm environments and azole-resistant A. fumigatus has not been fully studied. In this investigation, 50 isolates of A. fumigatus were obtained from a farm where tetraconazole has been sprayed twice a year for more than 15 years. The mean minimum inhibitory concentration (MIC) of isolates was 0.74 (0.19-1.5) mg/L against ITZ, which was below the medical resistance level of ITZ. The sequence of CYP51A from isolates indicated no gene mutations in isolates from the farm. Antifungal susceptibility of isolates to tetraconazole showed that spraying with tetraconazole did not induce resistance to tetraconazole or ITZ in A. fumigatus.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mmy/myu076DOI Listing

Publication Analysis

Top Keywords

azole resistance
8
resistance aspergillus
8
isolates
7
farm
4
farm fungicide
4
fungicide induce
4
induce azole
4
resistance
4
aspergillus fumigatus?
4
fumigatus? azole
4

Similar Publications

Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer.

Commun Biol

January 2025

Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.

View Article and Find Full Text PDF

Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.

View Article and Find Full Text PDF

: emerging challenges in pathogenesis and drug resistance.

Future Microbiol

January 2025

Infectious Diseases Department, The First Hospital of China Medical University, Shenyang, Liaoning, China.

() is an opportunistic pathogenic fungus that often causes severe infections in immunosuppressed patients. Among species, is the most pathogenic and lethal species. Current research faces challenges related to unknown pathogenic mechanisms, complex resistance mechanisms, insufficiently rapid and accurate diagnostic methods, and insufficient research on susceptibility to infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!